embedded scripting language

File I/O Support Library

August 2007
Abstract

The “File I/O Support Library” is an interface to standard
files (text and binary) for the PAWN scripting language.
The library provides simple read and write functions; it
supports UTF-8 for encoding the Unicode character set.
The software that is associated with this application note
can be obtained from the company homepage, see section
“Resources”

INTRODUCTION ..ot e e e e 1
Platform differences. 1
Filename matching...... ... 3
INT fleS oo 5
U -8 5
SECUTTEY .« v v vttt e e e 7

IMPLEMENTING THE LIBRARY .« .\ttt ettt ettt e et e e et eeii e eeieee s 9

U S AGE . ¢ ettt ittt e e 10

NATIVE FUNCTIONS .« ¢t ettt ettt et ettt e ettt e e e e 11

RESOURCESttt e e 24

DN DX .o e 25

ITB CompuPhase

ii

“CompuPhase” is a registered trademark of I'TB CompuPhase.

“Java” is a trademark of Sun Microsystems, Inc.

“Linux” is a registered trademark of Linus Torvalds.

“Microsoft” and “Microsoft Windows” are registered trademarks of Microsoft Corporation.

“Unicode” is a trademark of Unicode, Inc.

Copyright (¢©) 2004-2010, ITB CompuPhase; Eerste Industriestraat 19-21, 1401VL
Bussum, The Netherlands (Pays Bas); telephone: (+31)-(0)35 6939 261
e-mail: info@compuphase.com, WWW: http://www.compuphase.com

The information in this manual and the associated software are provided “as is”.
There are no guarantees, explicit or implied, that the software and the manual

are accurate.

Requests for corrections and additions to the manual and the software can be
directed to ITB CompuPhase at the above address.

Typeset with TEX in the “Computer Modern” and “Palatino” typefaces at a base size of 11 points.

Introduction

The “PAWN” programming language depends on a host application to provide an
interface to the operating system and/or to the functionality of the application.
This interface takes the form of “native functions”, a means by which a PAWN
script calls into the application. The PAWN “core” toolkit mandates or defines no
native functions at all (the tutorial section in the manual uses only a minimal set
of native functions in its examples). In essence, PAWN is a bare language to which
an application-specific library must be added.

That non-withstanding, the availability of general purpose native-function li-
braries is desirable. In this view, I developed the file input/output support library
for general purpose reading and writing to text and binary files.

This application note assumes that the reader understands the PAWN language.
For more information on PAWN, please read the manual “The PAWN booklet —
The Language” which is available from the company homepage.

Platform differences

Operating systems differ in their conventions for file/path names and the encoding
of text files. The file I/O library addresses these platform differences to some
extent, in order to allow portable PAWN scripts.

UNIX and UNIX-like operating systems use a forward slash to separate names of
directories and files, whereas Microsoft DOS and Windows use a backslash and
the Apple Macintosh uses a colon. The file I/O library accepts paths in the
“native OS” format as well as in the UNIX format. Forward slashes in path names
are automatically translated to the proper directory separator for the operating
system.

Note that under Microsoft DOS, file and directory names are still limited to eight
characters plus an extension of three characters. In addition, there is no portable
method for specifying a drive (e.g. “A:\myfile.txt”). Drive specifications are
typically ignored, however —see the section “Security”.

UNIX uses a single “line feed” character to end a text line (Asci 10), the Apple
Macintosh uses a “carriage return” character (Asci 13) and Microsoft DOS/
Windows use the pair of carriage return and line feed characters. Many high-level
protocols of the TCP/IP protocol suite also require both a carriage return and a

2 3 Platform differences

line feed character to end a line —examples are RFC 854 for Telnet, RFC 821 for
sMTP and RFC 2616 for HTTP.

The file I/O support library provides functions for reading lines and blocks from
a file, and for writing lines/blocks to a file. The line reading functions are for
text files and the block reading functions for binary files. Additional functions
allow you to read through a file character by character, or byte by byte, and to
write a file character by character. The character reading/writing functions are
indifferent for text versus binary files.

The line reading functions, fread and fwrite, check for all three common line
ending specifications: CR, LF and CR-LF. If a LF character follows a CR character,
it is read and considered part of a CR-LF sequence; when any other character
follows CR, the line is assumed to have ended on the CRr character. This implies
that you cannot embed single CR characters in a DOS/Windows or UNIX file, and
neither use LF characters in lines in a Macintosh file. It is uncommon, though,
that such characters appear. The pair LF-CR (CR-LF in the inverted order) is not
supported as a valid line-ending combination.

The line writing function writes the characters as they are stored in the string. If
you wish to end lines with a CR—LF pair, you should end the string to write with

\r\n.

The line reading and writing functions support UTF-8 encoding when the string
to read/write is in unpacked format. When the source or destination string is a
packed string, the line functions assume ASCII or another 8-bit encoding —such
as one of the ISO/IEC 8859 character sets (ISO/IEC 8859-1 is informally known
as “Latin-1"). Please see the manual “The PAWN booklet — The Language” for
details on packed and unpacked strings.

The block reading and writing functions, fblockread and fblockwrite, transfer
the specified number of cells as a binary block. The file is assumed to be in Little
Endian format (Intel byte order). On a Big Endian microprocessor, the block
reading /writing functions translate the data from Big Endian to Little Endian on
the flight.

The character reading and writing functions, fgetchar and fputchar, read and
write a single byte respectively. Byte order considerations are irrelevant. These
functions apply UTF-8 encoding by default, but they can also read/write raw
bytes.

Next to data transfer functions, the library contains file support functions for
opening and closing files (fopen, fclose), checking whether a file exists, (fexist),

Filename matching 3 3

browsing through files (fexist and fmatch), deleting a file (fremove), creating
a temporary file which is automatically deleted when you close it (ftemp), and
modifying the current position in the file (fseek).

Filename matching

The filename matching functions fmatch and fexist support filenames with
“wild-card” characters —also known as filename patterns. The concept of these
patterns exists in all contemporary operating systems (such as Microsoft Windows
and UNIX/Linux), but they differ in minor ways in which characters they use for
the wild-cards.

The patterns described here are a simplified kind of “regular expressions” found
in compiler technology and some developer’s tools. The patterns do not have the
power or flexibility of full regular expressions, but they are simpler to use.

Patterns are composed of normal and special characters. Normal characters are
letters, digits, and other a set of other characters; actually, everything that is not a
special character is “normal”. The special characters are discussed further below.
Each normal character matches one and only one character —the character itself.
For example, the normal character “a” in a pattern matches the letter “a” in
a name or string. A pattern composed entirely of normal characters is a special
case since it matches only one exactly one name/string: all characters must match
exactly. The empty string is also a special case, which matches only empty names
or strings.

Some operating systems (such as UNIX) support case-sensitive filenames, so that
the names “abc”, “ABC”, and “Abc” all refer to different files. Others (such
as DOS and Windows) support case-insensitive filenames, so that the previous
names all refer to the same file.

Special pattern characters are characters that have special meanings in the way
they match characters in filenames. They may match a single instance or multiple
occurrences of any character, or only a selected set of characters —or they may
change the sense of the matching of the rest of the pattern. The special pattern
characters are:

? Any
The any pattern ? matches any single character.
* Closure

The closure pattern * matches zero or more non-specific characters.

4 ; Filename matching

[abc]

[a-Zz]

[tabc]

{abc}

Set

The set pattern [abc] matches a single character in the set (a, b, c).
On case-insensitive matches, this will also match any character in the
set (A, B, C). If the set contains the] character, it must be quoted (see
below). If the set contains the hyphen character -, it must be the first
character in the set, be quoted, or be specified as the range ---.

Range set

The range pattern [a-z] matches a single character in the range a
through z. On case-insensitive matches, this will also match any char-
acter in the range A through Z. The character before the hyphen must
sort lexicographically before the character after the hyphen. Sets and
ranges can be combined within the same set of brackets; e.g. the pattern
[a-c123] matches any character in the set (a, b, c, 1, 2, 3).

Excluded set

The excluded set pattern [!abc] matches any single character not in the
set (a, b, c). Case-insensitive systems also exclude characters in the set
(A, B, C). If the set contains the hyphen character, it must immediately
follow the ! character, be quoted, or be specified as the range ---. In
any case, the ! must immediately follow the [character.

Repeated set

The repeated set is similar to the normal set, [abc], except that it
matches zero or more occurrences of the characters in the set. It is
similar to a closure, but matching only a subset of all characters. Simi-
lar to single character sets, the repeated set also supports ranges, as in
{a-z}, and exclusions, as in {!abc}.

Quoted (literal) character

A back-quote character ¢ removes any special meaning from the next
character. To match the quote character itself, it must be quoted itself,
as in ‘. The back-quote followed by two hexadecimal digits gives the
character with the byte value of the hexadecimal number. This can be
used to insert any character value in the string, including the binary
zero. The back-quote character is also called the grave accent.

Some patterns, such as *, would match empty names or strings. This is generally
undesirable, so empty names are handled as a special case, and they can be
matched only by an empty pattern.

PAWN uses the zero character as a string terminator. To match a zero byte, you
must use ‘00 in the pattern. For example, the pattern a[¢00-‘1f] matches a
string that starts with the letter “a” followed by a byte with a value between 0

UTF-§ ; 5

and 31.

INI files

Many programs need to store settings between sessions. For this reason, the
library provides a set of high-level functions for storing the configuration in an
“INT” file. An INT file is a plain text file where fields are stored as name/value
pairs. The name (called the “key” in the function descriptions) and the value
are separated by an equal sign (“=”) or a colon (“:”) —the colon separator is an
extension of this library.

INT files are optionally divided into sections. A section starts with a section name
between square brackets.

INI files are best known from Microsoft Windows, but several UNIX and Linux
programs also use this format (although the file extension is sometimes “.cfg”
instead of “.ini”). Playlist files in Shoutcast/Icecast format also use the syntax
of INT files.

UTE-8

UTF-8 is a variable length symbol encoding, for storing texts in Unicode or other
multi-byte character sets. ISO/IEC 10646-1 standardizes the Universal Charac-
ter Set (UCS) in two encodings: a 4-byte/character encoding called UCS-4 and
a 2-byte/character encoding called UCS-2. UCS-2 is the currently same as Uni-
code and it contains (roughly) the first 64,000 characters of the UCS: the Basic
Multilingual Plane (BMP).

UTF-8 is stores the UCS-4 set in 1 to 6 bytes per character and the UCS-2 set in 1
to 3 bytes per character. The UTF-8 encoding is becoming a popular replacement
for Ascil, especially for porting TCP/IP protocols to wider character sets. The
RFC 2279 describes the UTF-8 encoding; the official standard is ISO/TEC 10646-

1, annex R.

UTF-8 is fully compatible with 7-bit Ascil. It is, however, not compatible with
the extended ASCII character sets, like ISO/IEC 8859. For example, the letter a
is represented in ISO-8859-1 (Latin-1) as E5 (hexadecimal, or 229 in decimal),
but when this is encoded as UTF-8 it is represented by the two bytes C3—-A5
(hexadecimal). The lowest 256 codes of the Unicode set, by the way, are the

6 ; UTF-8

same as those of ISO-8859-1; that is, the character & is represented in Unicode as
U+00E5 —the same numerical value as it has in ISO-8859-1.

The UTF-8 encoding is very regular and contains sufficient redundancy to make
the chances of heuristic detection of UTF-8 very high. That is, if a text passes the
validation tests of UTF-8 encoding, it is very likely that the text is indeed UTF-
8. For instance, two-byte “leader” codes are in the range 192-223 and “follower”
codes range 128-191. In ISO-8859-1, nearly all leader codes represent accented
capitals while the range for the follower codes is for special symbols (non-letters).
The chance that an upper case accented letter is followed by a special symbol is
very small in European languages.

An additional advantage is that the UTF-8 encoding scheme is the same irrespec-
tive of whether the underlying processor is Little Endian or Big Endian. No Byte
Order Mark (BOM) is required at the start of a message or text. That said, some
applications write a BOM at the start of an UTF-8 file to mark the file as UTF-8
(as opposed to plain Ascii or Latin-1).

Some languages/libraries/papers implement or propose minor modifications to
UTF-8. For example, Java uses a 2-byte code to store ASCII zero whereas only a
single byte is required. Although this may seem to be just inefficient storage, the
UTF-8 standard is quite explicit in its insistence that values should be encoded in
the most compact form. The reason is that inefficient storage harms the heuristics
for distinguishing UTF-8 from an 8-bit encoding (for example, Latin-1), and it
introduces security weaknesses. The widespread practice storing generating sur-
rogate pairs (the encoding of a 4-byte sequence by two 2-byte sequences) as two
UTF-8 characters is also invalid UTF-8.

This file I/O support library for PAWN heuristically detects whether a line that
it reads is UTF-8 or not. If the line cannot be interpreted as UTF-8, it is, of
course, not UTF-8 and it is assumed to be an 8-bit ISO-8859 encoding. If the
line adheres to the syntax rules of UTF-8, interpreted strictly, the line is seen as
UTF-8. Ascil is always interpreted correctly, because UTF-8 is fully compatible
with 7-bit Ascil. The line reading/writing functions support UTF-8 only when
the source/destination string is an unpacked string, because only unpacked strings
can store the full UCS character set.

The file I/O support library does neither requires a Byte Order Mark (BoM), nor
interprets it in any special way. When a BOM is present in the file, it is read like
a common Unicode character.

The strict interpretation of the UTF-8 syntax rules may cause it to fail read-

Security 3 7

ing UTF-8 files generated by non-conforming applications. Writing overly long
sequences (as Java does with the null character) and incorrect encoding of sur-
rogate pairs were already mentioned, but other non-conforming implementations
exist as well. The UTF-8 standard advises to insert a special “invalid symbol”
character in the stream when reading an invalid code sequence, but this library
falls back to interpreting the string as non-UTF-8 instead.

Security

The file I/O support library provides functions to overwrite and remove files. To
allow untrusted scripts to use files, the file I/O support library restricts file access
to only a specific directory. This directory name is in an environment variable,
whose default name is AMXFILE.* If that setting is absent, the file I/O library
uses the directory indicated by the TMP, TEMP or TMPDIR environment variables.
If these are absent too, every file access or removal attempt fails.

The paths that you use to access a file, e.g. in the native function fopen, are
prefixed by the directory mentioned by the “AMXFILE” environment variable.
Any root directory specifications or drive letters in the file path are ignored.

For example, if the AMXFILE environment variable is set to /tmp, the path file-
name local/myfile.txt refers to /tmp/local/myfile.txt. Prefixing the local
subdirectory with a slash, to specify the local directory from the root, does
not have any effect: the path still refers to /tmp/local/myfile.txt. UNC
paths are handled too: the path //mybox/local/myfile.txt will still refer to
/tmp/local/myfile.txt (even if mybox refers to a different host than the cur-
rent machine).

The examples above use the forward slash as the directory separator, but the
native OS directory separator is handled in the same way.

You can set the AMXFILE environment variable to the root directory of the local
drive, giving the file I/O support library access to any file on the system, but this
is not advised. When you install the file I/O support library, it is advised that
you verify that the security system is in place and working correctly. For example,
the following script should write the file “testfile.txt” in the directory set in

* The actual name depends on how the library is implemented, see the chapter “Implementing the
library”.

8 3 Security

the AMXFILE environment variable or in the “temporaries” directory, but not in
the root directory.

Listing: script to test whether the root directory is shielded
#include <file>

main()
{
new File: file = fopen("/testfile.txt", io_write)
if (file)
{
fwrite file, "hello world\n"
fclose file
print "Please verify that the \"testfile.txt\" file is \
not in the root directory.\n"
}
else
print "Failed to create the file \"testfile.txt\".\n"
}

As explained in the section on UTF-8, the file I/O support library uses a strict
interpretation of the UTF-8 encoding format. This is partly done for reasons of
guarding against deliberately malformed UTF-8 strings.

Implementing the library

The file I/O support library consists of the files AMXFILE.C and FILE.INC. The C
file may be “linked in” to a project that also includes the PAWN abstract machine
(AMX.C), or it may be compiled into a DLL (Microsoft Windows) or a shared
library (Linux). The .INC file contains the definitions for the PAWN compiler
of the native functions in AMXFILE.C. In your PAWN programs, you may either
include this file explicitly, using the #include preprocessor directive, or add it to
the “prefix file” for automatic inclusion into any PAWN program that is compiled.

The “Implementer’s Guide” for the PAWN toolkit gives details for implementing
the extension module described in this application note into a host application.
The initialization function, for registering the native functions to an abstract
machine, is amx_FileInit and the “clean-up” function is amx_FileCleanup. In
the current implementation, calling the clean-up function is not required.

If the host application supports dynamically loadable extension modules, you may
alternatively compile the C source file as a DLL or shared library. No explicit
initialization or clean-up is then required. Again, see the Implementer’s Guide for
details.

The C source code contains a variable name and conditionally compiled code that
can be configured via a compiler option. The preprocessor macro AMXFILE_VAR
allows you to set the name of environment variable that specifies the restricted
directory (see the section “Security”). The default value for this macro is “AMX-
FILE”. If you set this macro to an empty string when compiling, the security
features of the file I/O support library are removed.

10

Usage

Depending on the configuration of the PAWN compiler, you may need to explicitly
include the FILE.INC definition file. To do so, insert the following line at the top
of each script:

#include <file>
The angle brackets “<...>” make sure that you include the definition file from
the system directory, in the case that a file called FILE.INC or FILE.P also exists
in the current directory.

From that point on, the native functions from the file I/O support library are
available. Below is an example program that reads a (text) file and dumps the
contents on the console:

Listing: readfile.p
#include <file>

main()
{
/* ask for a filename */
print "Please enter a filename: "
new filename[128 char]
getstring filename, .pack=true

/* try to open the file */

new File: file = fopen(filename, io_read)

if (!file)
{
printf "The file ’%s’ cannot be opened for reading\n", filename
exit

}

/* dump the file onto the console */
new line[200]
while (fread(file, line))

print line, .highlight=true

/* done */
fclose file

}

When you open a file for both reading and writing, you should call fseek when
switching between reading and writing, to ensure that the disk caches are properly
cleared.

11

Native functions

deletecfg Deletes a key or a section from an INI file
Syntax: bool: deletecfg(const filename[]="", const sec-
tion[]="", const key[]="")
filename The name and path of the INI file. If this parameter
is not set, the function uses the default name “con-
fig.ini”.
section The section from which to delete the key under. If
this parameter is not set, the function stores the key/
value pair outside any section.
key The key to delete. If this parameter is not set, the
function deletes the entire section.
Returns: true on success, false on failure.
Notes: If both section and key are not set, the function deletes all keys
that are outside any sections.
See also: readcfg, writecfg
fattrib Set the file attributes
Syntax: bool: fattrib(const name[], timestamp=0, attrib=0x0f)

Returns:

name

timestamp

attrib

The name of the file.

Time of the last modification of the file. When this
parameter is set to zero, the time stamp of the file is
not changed.

A bit mask with the new attributes of the file. When
set to 0x0f, the attributes of the file are not changed.

true on success and false on failure.

12 3 fblockread

Notes: The time is in number of seconds since midnight at 1 January 1970:
the start of the UNIX system epoch.

The file attributes are a bit mask. The meaning of each bit depends
on the underlying file system (e.g. FAT, NTFS, etx2 and others).

See also: fstat

fblockread Read an array from a file, without interpreting the data

Syntax: fblockread(File: handle, buffer[],

size=sizeof buffer)

handle The handle to an open file.

buffer The buffer to read the data into.

size The number of cells to read from the file. This value
should not exceed the size of the buffer parameter.

Returns: The number of cells read from the file. This number may be zero if
the end of file has been reached.

Notes: This function reads an array from the file, without encoding and
ignoring line termination characters, i.e. in binary format. The
number of bytes to read must be passed explicitly with the size
parameter.

See also: fblockwrite, fopen, fread

fblockwrite Write an array to a file, without interpreting the data

Syntax: fblockwrite(File: handle, const buffer[],

Returns:

size=sizeof buffer)

handle The handle to an open file.
buffer The buffer that contains the data to write to the file.
size The number of cells to write to the file. This value

should not exceed the size of the buffer parameter.

The number of cells written to the file.

fereatedir ; 13

Notes: This function writes an array to the file, without encoding, i.e. in
binary format. The buffer need not be zero-terminated, and a zero
cell does not indicate the end of the buffer.

See also: fblockread, fopen, furite

fclose Close an open file

Syntax: bool: fclose(File: handle)
handle The handle to an open file.

Returns: true on success and false on failure.

See also: fopen

fcopy Copy a file

Syntax: bool: fcopy(const source[], const target[])
source The name of the (existing) file that must be copied,

optionally including a full path.
target The name of the new file, optionally including a full
path.

Returns: true on success and false on failure.

Notes: If the target file already exists, it is overwritten.

See also: frename

fcreatedir Create a directory

Syntax: bool: fcreatedir(const name[])
name The name of the directory to create, optionally includ-

ing a full path.

Returns: true on success and false on failure.

Notes: To delete the directory again, use fremove. The directory must be

See also:

empty before it can be removed.

fremove

14 3 fexist

fexist

Syntax:

Returns:

Notes:

See also:

Count matching files, check file existence
fexist(const pattern[])

pattern The name of the file, optionally containing wild-card
characters.

The number of files that match the pattern

In the pattern, the characters “?” and “*¥” are wild-cards: “?”
matches any character —but only exactly one character, and “*”
matches zero or more characters. Only the final part of the path (the
portion behind the last slash or backslash) may contain wild-cards;
the names of the directories must be fully specified.

If no wild-cards are present, the function returns 1 if the file exists
and 0 if the file cannot be found. As such, you can use the function
to verify whether a file exists.

Depending on the operating system, the pattern matching may be
case sensitive.

fmatch

fgetchar
Syntax:

Returns:

See also:

Read a single character (byte)
fgetchar(File: handle, bool: utf8=true)
handle The handle to an open file.

utf8 If the argument utf8 is true, the function interprets
UTF-8 encoding and may read multiple bytes from
the file to form an extended character. If, on the other
hand, the utf8 argument is false, the function reads
a single byte from the file and returns it as is.

The character that was read, or EOF on failure.

fopen, fputchar

fmatch ; 15

filecrc Return the 32-bit CRC value of a file

Syntax: filecrc(const name[])
name The name of the file.

Returns: The 32-bit CRC value of the file, or zero if the file cannot be opened.

Notes: The CRC value is a useful measure to check whether the contents of
a file has changed during transmission or whether it has been edited
(provided that the CRC value of the original file was saved). The
CRC value returned by this function is the same as the one used
in ZIP archives (PKZip, WinZip) and the “SFV” utilities and file
formats.

See also: fstat

flength Return the length of an open file

Syntax: flength(File: handle)
handle The handle to an open file.

Returns: The length of the file, in bytes.

See also: fopen, fstat

fmatch Find a filename matching a pattern

Syntax: bool: fmatch(name[], const pattern[], index=0,

maxlength=sizeof name)

name If the function is successful, this parameter will hold
a n'" filename matching the pattern. The name is
always returned as a packed string.

pattern The name of the file, optionally containing wild-card
characters.

16 3 fopen

Returns:

Notes:

See also:

index The number of the file in case there are multiple files
matching the pattern. Setting this parameter to 0
returns the first matching file, setting it to 1 returns
the second matching file, etc.

size The maximum size of parameter name in cells.
true on success and false on failure.

In the pattern, the characters “?” and “*” are wild-cards: “?”
matches any character —but only exactly one character, and “*”
matches zero or more characters. Only the final part of the path (the
portion behind the last slash or backslash) may contain wild-cards;
the names of the directories must be fully specified.

Depending on the operating system, the pattern matching may be
case sensitive.

fexist

fopen

Syntax:

Open a file for reading or writing

File: fopen(const name[],
filemode: mode=io_readwrite)

name The name of the file, including the path. The name
must adhere to the conventions of the operating sys-
tem

mode The intended operations on the file. It must be one of
the following constants:
io_read
opens an existing file for reading only (the
file must already exist)
io_write
creates a new file (or truncates an existing
file) and opens it for writing only
io_readwrite
opens a file for both reading and writing; if
the file does not exist, a new file is created

fread ; 17

io_append
opens a file for writing only, where all (new)
information is appended behind the existing
contents of the file; if the file does not exist,
a new file is created

Returns: A “handle” or “magic cookie” that refers to the file. If the return
value is zero, the function failed to open the file.
Notes:
See also: fclose
fputchar Write a single character to the file
Syntax: bool: fputchar(File: handle, value, bool: utf8=true)
handle The handle to an open file.
value The value to write (as a single character) to the file.
utf8 If the argument utf8 is true, the function writes the
value in UTF-8 encoding, meaning that any value
above 127 will be expanded into multiple bytes in the
file. If the ut£8 argument is false, the function writes
a single byte to the file; values above 255 are not sup-
ported.
Returns: true on success and false on failure.
Notes:
See also: fgetchar, fopen
fread Reads a line from a text file
Syntax: fread(File: handle, string[], size=sizeof string, bool:

pack=false)
handle The handle to an open file.

string The array to store the data in; this is assumed to be
a text string.

18 ; fremove

size The (maximum) size of the array in cells. For a packed
string, one cell holds multiple characters.

pack If the pack parameter is false, the text is stored as
an unpacked string and the function interprets UTF-8
encoding. When reading text in a packed string, no
UTF-8 interpretation occurs.

Returns: The number of characters read. If the end of file is reached, the
return value is zero.
Notes: Reads a line of text, terminated by CR, LF or CR—LF characters, from
to the file. Any line termination characters are stored in the string.
See also: fblockread, fopen, furite
fremove Delete a file or directory
Syntax: bool: fremove(const name[])
name The name of the file or the directory.
Returns: true on success and false on failure.
Notes: A directory can only be removed if it is empty.
See also: fcreatedir, fexist, fopen
frename Rename a file
Syntax: bool: frename(const oldname[], const newnamel[])
oldname The current name of the file, optionally including a
full path.
newname The new name of the file, optionally including a full
path.
Returns: true on success and false on failure.
Notes: In addition to changing the name of the file, this function can also
move the file to a different directory.
See also: fcopy, fremove

fstat 3 19

fseek Set the current position in a file
Syntax: fseek(File: handle, position=0,
seek_whence: whence=seek_start)
handle The handle to an open file.
position The new position in the file, relative to the parameter
whence.
whence The starting position to which parameter position
relates. It must be one of the following;:
seek_start Set the file position relative to the
start of the file (the position pa-
rameter must be positive);
seek_current Set the file position relative to the
current file position: the position
parameter is added to the current
position;
seek_end Set the file position relative to the
end of the file (parameter position
must be zero or negative).
Returns: The new position, relative to the start of the file.
Notes: You can either seek forward or backward through the file.
To get the current file position without changing it, set the position
parameter to zero and whence to seek_current.
See also: fopen
fstat Return the size and the time stamp of a file
Syntax: bool: fstat(const namel[], &size=0, ×tamp=0,

&attrib=0, &inode=0)
name The name of the file.

size If the function is successful, this parameter holds the
size of the file on return.

20 3 ftemp

timestamp If the function is successful, this parameter holds the
time of the last modification of the file on return.

attrib If the function is successful, this parameter holds the
file attributes.

inode If the function is successful, this parameter holds in-
ode number of the file. An inode number is a number
that uniquely identifies a file, and it usually indicates
the physical position of (the start of) the file on the
disk or memory card.

Returns: true on success and false on failure.

Notes: In contrast to the function flength, this function does not need the
file to be opened for querying its size.

The time is in number of seconds since midnight at 1 January 1970:
the start of the UNIX system epoch.

The file attributes are a bit mask. The meaning of each bit depends
on the underlying file system (e.g. FAT, NTFS, etx2 and others).

See also: fattrib, flength

ftemp Create a temporary file

Syntax: File: ftemp()

Returns: A handle to the temporary file (or zero on failure).

Notes: Creates a new temporary file, with a random or semi-random file-
name and usually in the “TMP” or “TEMP” subdirectory, for both
reading and writing. When you close the file with fclose, it is
automatically deleted.

See also: fclose, fopen

readcfg 3 21

fwrite

Syntax:

Returns:

Notes:

See also:

Write a string to a file
fwrite(File: handle, const string[])
handle The handle to an open file.
string The string to write to the file.

The number of characters actually written; this may be a different
value from the string length in case of a writing failure (“disk full”,
or quota exceeded).

This function writes a zero-terminated buffer, presumably a text
string, to the file. If the text string is in unpacked format, it is
written to the file in UTF-8 encoding. A packed string is written to
the file “as is”.

The function does not append line-ending characters to the line of
text written to the file (line ending characters are CR, LF or CR—LF
characters).

fblockwrite, fopen, fread

readcfg
Syntax:

Reads a text field from an INT file

readcfg(const filename[]="", const section[]="",
const key[], valuel[], size=sizeof value, const
defvalue[]="", bool: pack=false)

filename The name and path of the INI file. If this parameter
is not set, the function uses the default name “con-
fig.ini”.

section The section to look for the key. If this parameter is
not set, the function reads the key outside any section.

key The key whose value must be looked up.

value The buffer into which the field that is read is stored
into. If the key cannot be found in the appropriate
section of the INI file, this field will contain the de-
fvalue parameter upon return.

22 ; readcfgualue

size The (maximum) size of the value array in cells. For
a packed string, one cell holds multiple characters.

defvalue The string to copy into parameter value in case that
the function cannot read the field from the INI file.

pack If the pack parameter is false, the text is stored as
an unpacked string and the function interprets UTF-8
encoding. When reading text in a packed string, no
UTF-8 interpretation occurs.

Returns: The number of characters stored in parameter value.
See also: readcfgvalue, writecfg
readcfgvalue Reads a numeric field from an INT file
Syntax: readcfgvalue(const filename[]="",
const section[]="", const key[], def-
value=0)

filename The name and path of the INI file. If this parameter
is not set, the function uses the default name “con-
fig.ini”.

section The section to look for the key. If this parameter is
not set, the function reads the key outside any section.

key The key whose value must be looked up.

defvalue The value to return in case that the function cannot
read the field from the INT file.

Returns: The numeric value if the field, or the value of defvalue if the field
was not found in the section and/or at the key.

See also: readcfg, writecfgvalue

writecfgualue ; 23

writecfg Writes a text field to an INI file
Syntax: bool: writecfg(const filename[]="",
const section[]="", const key[], const
value[])
filename The name and path of the INI file. If this parameter
is not set, the function uses the default name “con-
fig.ini”.
section The section to store the key under. If this parameter is
not set, the function stores the key/value pair outside
any section.
key The key for the field.
value The value for the field.
Returns: true on success, false on failure.
See also: deletecfg, readcfg, writecfgvalue
writecfgvalue Writes a numeric field to an INT file
Syntax: bool: writecfgvalue(const filename[]="",
const section[]="",
const key[], value)
filename The name and path of the INI file. If this parameter
is not set, the function uses the default name “con-
fig.ini”.
section The section to store the key under. If this parameter is
not set, the function stores the key/value pair outside
any section.
key The key for the field.
value The value for the field, as a signed (decimal) number.
Returns: true on success, false on failure.
See also: readcfgvalue, writecfg

24

Resources

The PAWN toolkit can be obtained from www.compuphase.com in various for-
mats (binaries and source code archives). The manuals for usage of the language
and implementation guides are also available on the site in Adobe Acrobat format
(PDF files).

Documentation on Unicode and the Basic Multilingual Plane (BMP) appears on
http://www.unicode.org. A page for the UTF-8 encoding, http://www.utf-
8.com contains a link to RFC 2279, and other information. To test the robust-
ness of an UTF-8 decoder, the test file by Markus Kuhn is very valuable; see
http://www.cl.cam.ac.uk/ mgk25.

25

Index

o Names of persons (not products) are in italics.
¢ Function names, constants and compiler reserved words are in typewriter
font.

#include, 9 F fattrib, 11
fblockread, 12
fblockwrite, 12

Abstract Machine, 9

Adobe Acrobat, 24 iclose,lilj)i’)
Apple Macintosh, 1, 2 coPY;)
fcreatedir, 13
ASCIL 5 fexist, 14
fgetchar, 14
Back-quote, 4 File handle, 17
Backslash, 1 filecrc, 15
Big Endian, 2, 6 flength, 15
Binary files, 2 fmatch, 15
BMP, 5, 24 fopen, 16
Byte Order Mark, 6 Forward slash, 1
fputchar, 17
fread, 17

Carriage return character, See End-
Of-Line character
Copy file, 13

fremove, 18
frename, 18

i fseek, 19

Create directory, 13 fstat. 19
ftemp, 20

Delete file, 18 furite, 21
deletecfg, 11
Directory, 13, 18 H Host application, 9
Directory separator, 1
Directory separator character, 1 1 Icecast, 5
DLL, 9 INT files, 5, 11, 21-23
DOS, See Microsoft DOS Intel byte order, See Little Endian

Internet protocols, See TCP /IP
End-Of-Line character, 1 ISO/IEC 10646-1, 5

—

—

26 ; Index

ISO/IEC 8859, 2, 5
R

readcfg, 21
Java, 6 readcfgvalue, 22

Registering, 9
Kuhn, Markus, 24 Rename file. 18

Latin-1, 2, see also ISO/IEC 8859 g

Line-feed character, See End-Of-Line Security, 7, 9

character Shared library, 9
Linux, 1, 9, see also UNIX Shoutcast, 5
Little Endian, 2, 6 Slash, See Forward slash

- - Surrogate pairs, 6
Macintosh, See Apple Macintosh

Magic cookie, 17 T
Microsoft DOS, 1, 2 TCP/IP protocols, 1, 5
Microsoft Windows, 1, 2, 9 Text files, 2

Motorola byte order, See Big Endian

U vcsa, s

Native functi 9
ative functions, Unicode, 5, 24

registering, 9

Newline character, See End-Of-Line UNIX, 1, 2
character UNIX epoch, 12, 20
Unpacked strings, 2
Operating System, 1 UTF-8, 2, 5, 8, 14, 17, 18, 21, 22

OS, See Operating System

Pack strings, 2 W Wild-card characters, 3
Playlist files, 5 Windows, See Microsoft Windows

Prefix file, 9 writecfg, 23
Preprocessor directive, 9 writecfgvalue, 23

	Introduction
	Platform differences
	Filename matching
	INI files
	UTF-8
	Security

	Implementing the library
	Usage
	Native functions
	Resources
	Index

