
Pawn

embedded scripting language

Implementer’s Guide

August 2007

ITB CompuPhase

ii

“Java” is a trademark of Sun Microsystems, Inc.

“Microsoft” and “Microsoft Windows” are registered trademarks of Microsoft Corporation.

“Linux” is a registered trademark of Linus Torvalds.

“CompuPhase” is a registered trademark of ITB CompuPhase.

Copyright c© 1997–2007, ITB CompuPhase; Eerste Industriestraat 19–21, 1401VL
Bussum, The Netherlands (Pays Bas); telephone: (+31)-(0)35 6939 261
e-mail: info@compuphase.com, WWW: http://www.compuphase.com

The documentation is licensed under the Creative Commons Attribution-ShareAlike 2.5 License. A

summary of this license is in appendix J. For more information on this licence, visit

http://creativecommons.org/licenses/by-sa/2.5/

or send a letter to Creative Commons, 559 Nathan Abbott Way, Stanford, California 94305, USA.

The information in this manual and the associated software are provided “as is”. There are no

guarantees, explicit or implied, that the software and the manual are accurate. Requests for corrections

and additions to the manual and the software can be directed to ITB CompuPhase at the above

address.

Typeset with TEX in the “Computer Modern” and “Palatino” typefaces at a base size of 11 points.

iii

Table of contents

Introduction . 1
The compiler . 4
The abstract machine . 6

Using the abstract machine . 6
Calling “public” functions . 17
Function reference . 23
Error codes . 48

Extension modules .50
Writing “wrappers” .53
Dynamically loadable extension modules . 61
Error checking in native functions .62
Customizing the native function dispatcher .63

Appendices .67
A: Building the compiler . 67
B: Building the Abstract Machine .72
C: Using CMake . 87
D: Abstract Machine design and reference . 89
E: Debugging support . 108
F: Code generation notes . 112
G: Adding a garbage collector . 116
H: Running scripts from ROM . 124
I: Running scripts with overlays .127
J: License . 131

Index .133

iv � Table of contents

1

Introduction

“pawn” is a simple, typeless, 32-bit extension language with a C-like syntax. The
language and features are described in the companion booklet with the sub-title
“The Language”. This “Implementer’s Guide” discusses how to embed the pawn
scripting language in a host application.

The pawn toolkit consists of two major parts: the compiler takes a script and
converts it to P-code (or “bytecode”), which is subsequently executed on an ab-
stract machine (or “virtual machine”). pawn itself is written mostly in the C
programming language (there are a few files in assembler) and it has been ported
to Microsoft Windows, Linux, PlayStation 2 and the XBox. When embedding
pawn in host applications that are not written in C or C++, I suggest that you
use the AMX DLLs under Microsoft Windows.�
There is a short chapter on the compiler. Most applications execute the compiler
as a standalone utility with the appropriate options. Even when you link the
compiler into the host program, its API is still based on options as if they were
specified on the command line.

The abstract machine is a function library. The chapter devoted to it contains
several examples for embedding the abstract machine in a host application, in
addition to a reference to all API functions.

Appendices, finally, give compiling instructions for various platforms and back-
ground information —amongst others the debugger interface and the instruction
set. �
The pawn language and toolset was designed to be an extension language for
applications —as opposed to many other scripting languages that primarily aim
at the command shell of the operating system. Being an extension language, the
tools an libraries of the pawn toolset must be integrated with the product.

The two main parts of the pawn toolset are the compiler and the abstract ma-
chine. The compiler may either be linked into the host application, or it may
be a separate process that is launched from the host application. For perfor-
mance reasons, the abstract machine is always embedded (linked-in) inside the
host application.

2 � Introduction

The pawn compiler takes a series of text files containing the code for the user
script and definitions of the environment/the host application. One of the include
files is implicit: the pawn compiler will automatically include it in any user script,
but it will fail silently if that file is not present. The default name for that implicit
include file (or “prefix file”) is “default.inc”. You can override this name with
a command line option to the pawn compiler.

For a host application, it is advised to create an implicit include file containing:
⋄ all “application specific” constants;

⋄ all native functions that the host application provides (or a core subset of these
native functions);

⋄ all overloaded operators (or a core subset of these);

⋄ all stock functions (or a core subset of these);
⋄ forward declarations of all public functions;

⋄ declarations of public variables (if used).
You will have to refer to the pawn booklet “The Language” for writing the dec-
larations mentioned in the above list.

The rationale behind having these declarations in an implicitly included file is
that the definitions are now always available. This avoids errors, especially in
the case of overloaded operators and public functions. If the definition of an
overloaded operator is missing, in many cases the pawn compiler will use the

Introduction � 3

default operator without warning. If a user makes a mistake in the declaration of
a public function, the host application will not be able to call it, or it will pass
the wrong parameters. A forward declaration of the public function catches this
error, because the incorrect public function will not match the earlier declaration.

Apart from this implicit include file, the user can also write custom include files
and explicitly include these. In addition, a host application may supply additional
“system” include files that are not added to a project automatically and must be
included explicitly.

The next two chapters are on the pawn compiler and the abstract machine re-
spectively. The most common set-up is the one where the compiler runs as a
separate process that is spawned from the host application.

4

The compiler

The pawn compiler is currently the only translator (or parser) that implements
the pawn language. The pawn compiler translates a text file with source code to
a binary file for an abstract machine. The output file format is in appendix D. The
usage of the pawn compiler is described in the pawn booklet “The Language”.

• Deployment / installation

In most operating systems, the compiler is a separate self-contained executable
program. It can run as is, but it will look for a configuration file in the same
directory as where the compiler is in itself, and it will locate (system) include files
in a specific directory. For the retail packages, the actual compiler is in a dynam-
ically loaded library. This library is called “libpawnc.so” or “libpawnc.dll”
(for Linux/Unix and “pawncc.exe” for Microsoft Windows respectively).

Concretely, to set up the pawn compiler on a system:
⋄ Copy the program file for the compiler (typically “pawncc” for Linux/Unix and

“pawncc.exe” for Microsoft Windows) in a directory of your choice, and also
copy the library “libpawnc.so” or “libpawnc.dll” if it exists.

⋄ Optionally copy or create a configuration file, called “pawn.cfg”, in the same
directory.

⋄ Add a subdirectory called “include” and copy the include files into that di-
Prefix file: 1

rectory —especially add the “default.inc” prefix file into that directory, if
applicable.∗ This “include” directory may either be below the directory in
which the compiler and pawn.cfg reside, or it may be at the same level as
the directory where the compile and pawn.cfg are. For example, if on a Win-
dows system pawncc.exe and libpawnc are in C:\Pawn\bin, then the com-
piler will look for include files in either the directory C:\Pawn\bin\include or
C:\Pawn\include.

• The configuration file

On platforms that support it (currently Microsoft DOS, Microsoft Windows and
Linux), the compiler reads the options in a “configuration file” on start-up. The

∗
For details on the prefix file, look up the compiler command line option -p in the pawn booklet

“The Language”.

The compiler � 5

configuration file must have the name “pawn.cfg” and it must reside in the same
directory as the compiler executable program and/or the compiler dynamically
loaded library.

In a sense, the configuration file is an implicit response file (see the pawn booklet
“The Language” for details on response files). Options specified on the command
line may overrule those in the configuration file.

Errors

• Compiler errors

The error and warning messages produced by the compiler are described in the
companion pawn booklet “The Language”.

• Run time errors

The function library that forms the abstract machine returns error codes. These
Run-time errors:
48error codes encompass both errors for loading and initializing a binary file and

run-time errors due to programmer errors (bounds-checking).

6

The abstract machine

The abstract machine is a C function library. There are several versions: one
that is written in ANSI C, and optimized versions that use GNU C extensions or
assembler subroutines.

• Deployment / installation

The abstract machine is either linked into the host program, or it is implemented
as a loadable library (a DLL in Microsoft Windows, or a “shared library” in
Linux). No special considerations are required for redistributing the abstract
machine.

If you allow extension modules to be loaded dynamically, you may need to set an
Dynamically
loadable exten-
sion modules:
61

environment variable in Linux/UNIX. These operating systems search for libraries
in a specific path, unless an explicit path is given for the library. In Linux/
UNIX, the abstract machine builds a specific path from the combination of the
environment variable “AMXLIB” and the library name. For example, if AMXLIB is
set to “/opt/Pawn/bin” and the module uses amxTime, the abstract machine will
load “/opt/Pawn/bin/amxTime.so”. The name of the environment variable is
configurable, —see page 75.

Using the abstract machine

To use the abstract machine:
1 initialize the abstract machine and load the compiled pseudo-code;
2 register all native functions that the host program provides, directly with

amx_Register or indirectly;
3 run the compiled script with amx_Exec;
4 and clean up the abstract machine and other resources.

The example (in C) below illustrates these steps:

int main(int argc, char *argv[])

{

extern AMX_NATIVE_INFO console_Natives[];

extern AMX_NATIVE_INFO core_Natives[];

AMX amx;

cell ret = 0;

int err;

if (argc != 2)

PrintUsage(argv[0]);

Using the abstract machine � 7

err = aux_LoadProgram(&amx, argv[1], NULL);

if (err != AMX_ERR_NONE)

ErrorExit(&amx, err);

amx_Register(&amx, console_Natives, -1);

err = amx_Register(&amx, core_Natives, -1);

if (err)

ErrorExit(&amx, err);

err = amx_Exec(&amx, &ret, AMX_EXEC_MAIN);

if (err)

ErrorExit(&amx, err);

printf("%s returns %ld\n", argv[1], (long)ret);

aux_FreeProgram(&amx);

return 0;

}

The cell data type is defined in AMX.H, it usually is a 32-bit integer.

The program checks first whether a command line argument is present; if so, the
program assumes that it is the filename of a compiled pawn script. The function
PrintUsage is discussed later in this chapter.

Function aux_LoadProgram allocates memory for the abstract machine, loads the
compiled pseudo-code and initializes the lot. This function is not part of the pawn
core, just because of what it does: memory allocation and file i/o. Therefore, the
function aux_LoadProgram is implemented in a separate source file and prefixed
with “aux_”, rather than “amx_” (“aux” stands for auxiliary). We will look at an
implementation of aux_LoadProgram below.

The program has declarations for two sets of native functions: console functions
from AMXCONS.C and core functions from AMXCORE.C. Both these sets are registered
with the abstract machine. Function amx_Register returns an error code if the
compiled script contains unresolved calls to native functions. Hence, only the
result of the last call to amx_Register needs to be checked.

The call to amx_Exec runs the compiled script and returns both an error code
and a program result code. Errors that can occur during amx_Exec are division
by zero, stack/heap collision and other common run-time errors, but a native
function or an assert instruction in the source code of the pawn program may
also abort the pawn script with an error code.

Once the script has finished running, aux_FreeProgram releases memory and
resources that were allocated for it. This, too, is an auxiliary function —see page
10 for an example implementation.

8 � Using the abstract machine

The abstract machine API has no functions that read a compiled script from file
into memory; the host program must implement these. An example implementa-
tion that comes with the pawn toolkit is aux_LoadProgram. This is a fairly large
function as it:

1 opens the file and checks/massages the header;

2 optionally allocates a memory block to hold the compiled pseudo-code (P-
code);

3 reads in the complete P-code file;

4 initializes the abstract machine and prepares the P-code for execution;

5 cleans up resources that it allocated in case an error occurs.

int aux_LoadProgram(AMX *amx, char *filename, void *memblock)

{

FILE *fp;

AMX_HEADER hdr;

int result, didalloc;

/* step 1: open the file, read and check the header */

if ((fp = fopen(filename, "rb")) == NULL)

return AMX_ERR_NOTFOUND;

fread(&hdr, sizeof hdr, 1, fp);

amx_Align16(&hdr.magic);

amx_Align32((uint32_t *)&hdr.size);

amx_Align32((uint32_t *)&hdr.stp);

if (hdr.magic != AMX_MAGIC) {

fclose(fp);

return AMX_ERR_FORMAT;

} /* if */

/* step 2: allocate the memblock if it is NULL */

didalloc = 0;

if (memblock == NULL) {

if ((memblock = malloc(hdr.stp)) == NULL) {

fclose(fp);

return AMX_ERR_MEMORY;

} /* if */

didalloc = 1;

/* after amx_Init(), amx->base points to the memory block */

} /* if */

/* step 3: read in the file */

rewind(fp);

fread(memblock, 1, (size_t)hdr.size, fp);

fclose(fp);

/* step 4: initialize the abstract machine */

memset(amx, 0, sizeof *amx);

result = amx_Init(amx, memblock);

Using the abstract machine � 9

/* step 5: free the memory block on error, if it was allocated here */

if (result != AMX_ERR_NONE && didalloc) {

free(memblock);

amx->base = NULL; /* avoid a double free */

} /* if */

return result;

}

Step 1: pawn can run on both Little-Endian and Big-Endian architectures, but
it uses a single file format for its pseudo-code. The multi-byte fields in the header
of the file format are in Little Endian (or “Intel” format). When running on a
Big Endian CPU, function amx_Init adjusts all fields in the AMX_HEADER struc-
ture from Little Endian to Big Endian. The function aux_LoadProgram, however,
deals with a few header header fields before amx_Init has run, so it must per-
form the proper alignment explicitly on a Big Endian CPU, using the functions
amx_Align16 and amx_Align32. Calling these functions on a Little Endian ma-
chine does no harm.

The header of the compiled script contains a special number. We check this
“magic file” here immediately, because if we find a different value, all other fields
in the header will likely be mangled as well.

Step 2: The size of the binary image of the compiled script is not equal to the
total memory requirements —it lacks the memory requirements for the stack and
the heap. The “stp” (Stack Top) field in the header of the file format gives the
correct memory size.

With the above implementation of aux_LoadProgram, you can load the compiled
script either into a block of memory that you allocated earlier, or you can let
aux_LoadProgram allocate memory for you. The memblock argument must either
point to a memory block with an adequate size, or it must be NULL, in which case
the function allocates a block.

Step 3: The complete file must be read into the memory block, including the
header that we read near the function. After reading the file into memory, it can
be closed. As an aside, the the value of hdr.size is the same as the file length.

Step 4: It is important to clear the AMX structure before calling amx_Init, for
example using memset.

Step 5: amx_Init does a few checks on the header and it runs quickly through
the P-code to relocate jump and variable addresses and to check for invalid in-

10 � Using the abstract machine

structions. If this verification step fails, we will want to free the memory block
that the function allocated, but only if the function allocated it.

Finally, for completeness, the functions aux_FreeProgram, ErrorExit and Print-

Usage are below:

int aux_FreeProgram(AMX *amx)

{

if (amx->base!=NULL) {

amx_Cleanup(amx);

free(amx->base);

memset(amx,0,sizeof(AMX));

} /* if */

return AMX_ERR_NONE;

}

void ErrorExit(AMX *amx, int errorcode)

{

printf("Run time error %d: \"%s\" on line %ld\n",

errorcode, aux_StrError(errorcode),

(amx != NULL) ? amx->curline : 0);

exit(1);

}

void PrintUsage(char *program)

{

printf("Usage: %s <filename>\n", program);

exit(1);

}

• Controlling program execution

The code snippets presented above are enough to form an interpreter for pawn
programs. A drawback, however, is that the pawn program runs uncontrolled
once it is launched with amx_Exec. If the pawn program enters an infinite loop,
for example, the only way to break out of it is to kill the complete interpreter —or
at least the thread that the interpreter runs in. Especially during development,
it is convenient to be able to abort a pawn program that is running awry.

The abstract machine has a mechanism to monitor the execution of the pseudo-
code that goes under the name of a “debug hook”. The abstract machine calls
the debug hook, a function that the host application provides, at specific events,
such as the creation and destruction of variables and executing a new statement.
Obviously, the debug hook has an impact on the execution speed of the abstract
machine. To minimize the performance loss, the host application can enable the
debug hook “as needed” and keep it disabled when it is not needed.

Using the abstract machine � 11

To install a debug hook, call amx_SetDebugHook. A debug hook function can
inspect the status of the abstract machine and browse through the symbolic in-
formation (and the source files) when it gets invoked. To set up a debug hook,
you would add a call to amx_SetDebugHook somewhere between amx_Init and
amx_Exec. In the pawnrun program laid out at page 6 (function main), you
could add the following line below the call to aux_LoadProgram:

err = amx_SetDebugHook(&amx, prun_Monitor);

The function amx_Monitor becomes the “debug hook” function that is attached
to the specified abstract machine. A minimal implementation of this function is
below:

int AMXAPI prun_Monitor(AMX *amx)

{

return abortflagged ? AMX_ERR_EXIT : AMX_ERR_NONE;

}

If the debug hook returns any code other than AMX_ERR_NONE, execution halts and
amx_Exec returns the specific error code. The code AMX_ERR_SLEEP is a special
case: it aborts execution in a way that it can be restarted by passing the special
“index” AMX_EXEC_CONT to function amx_Exec. The abstract machine calls the
debug hook just before executing a new statement (on a new line).

Exactly how the host program decides whether to continue running or to abort the
abstract machine is implementation dependent. This example uses a global vari-
able, abortflagged, that is set to a non-zero value —by some magical procedure—
if the abstract machine(s) must be aborted.

There exists a more or less portable way to achieve the “magic” referred to in the
previous paragraph. If you set up a signal function to set the abortflagged

variable to 1 on a SIGINT signal, you have an “ANSI C”-approved way to abort
an abstract machine. The snippet for the signal function appears below:

void sigabort(int sig)

{

abortflagged = 1;

signal(sig, sigabort); /* re-install the signal handler */

}

And somewhere, before calling amx_Exec, you add the line:

signal(SIGINT, sigabort);

12 � Using the abstract machine

Debug hook functions allow you to monitor stack usage, profile execution speed
at the source line level and, well. . . write a debugger. Detailed information on
the debug hook is found in appendix E of this manual.

One caveat is that the debug hook depends on the presence of break opcodes.
Appendix D doc-
uments all op-
codes

When a pawn program is compiled without debug information, no break opcodes
are present in the P-code and the debug hook will never get called. That renders
our monitor function ineffective. This is okay, though, because the user or the host
application has explicitly compiled without debugging checks to improve run-time
performance —by default the pawn compiler has (minimal) debug information
enabled.

In your host application, you may want to check for debug information and, in its
absence, warn the user that some functionality may not be available. To verify
whether debug information is present, use the following snippet:

uint16_t flags;

amx_Flags(&amx, &flags);

if ((flags & AMX_FLAG_NOCHECKS) != 0) {

/* no BREAK opcodes are present, a debug hook will not run */

Code to handle the case of missing debug support

} /* if */

• A smarter “break-out” hook

The debug hook described above has a major drawback: it makes the script run
more slowly, because the abstract machine calls the hook function repetitively.
In the normal situation (no “abort” is signalled), the hook function does nothing
—except take time.

An improvement is to run without debug hook normally, and to set up a debug
hook only after an abort signal break has already been detected. To this end, we
change the signal function to:

void sigabort(int sig)

{

/* install the debug hook procedure if this was not done already */

amx_SetDebugHook(global_amx, prun_Monitor);

signal(sig,sigabort); /* re-install the signal handler */

}

Using the abstract machine � 13

If you use the debug hook only to check for a “break” or “abort” signal, there is
no need for a global variable that flags this request: de debug hook will only ever
be called when the user has already issued the break/abort request, so the debug
hook can just always return with an error code to cause the script to abort.

int AMXAPI prun_Monitor(AMX *amx)

{

return AMX_ERR_EXIT;

}

While the abortflagged global variable is was made redundant, I have introduced
a new global variable: global_amx. The standard signal function from ANSI
C does not provide for passing a “user value” via a parameter, so you have to
invent another way to make the abstract machine that you wish to abort known
to the signal function. In practice, your host application will likely have another
implementation for the signal function, such as an event procedure in a GUI.

• Monitoring stack/heap usage

A useful function that the debug hook can implement is to monitor how much
memory the compiled script uses at run-time —in other words, checking the max-
imum stack and heap usage. To this end, the example below extends the debug
“monitor” function of the previous sections, and adds another refinement at the
same time.

int AMXAPI amx_Monitor(AMX *amx)

{

int err;

unsigned short flags;

STACKINFO *stackinfo;

/* record the heap and stack usage */

err = amx_GetUserData(amx, AMX_USERTAG(’S’,’t’,’c’,’k’),

(void**)&stackinfo);

if (err == AMX_ERR_NONE) {

if (amx->stp - amx->stk > stackinfo->maxstack)

stackinfo->maxstack = amx->stp - amx->stk;

if (amx->hea - amx->hlw > stackinfo->maxheap)

stackinfo->maxstack = amx->stp - amx->stk;

} /* if */

/* check whether an "abort" was requested */

return abortflagged ? AMX_ERR_EXIT : AMX_ERR_NONE;

}

14 � Using the abstract machine

This extended version of amx_Monitor still checks the abortflagged variable
Appendix D cov-
ers the memory
layout

(which is set on a Ctrl-C or Ctrl-Break signal), but at the same time it also
calculates the current stack and heap usage and records these in a structure. The
used stack space is the difference between the top-of-stack and the current stack
point; similarly, the heap usage is the difference between the current heap pointer
and the heap bottom. More interesting is that the function stores this maxima
of the calculated values in the variable stackinfo, which is a structure with the
following definition:

typedef struct tagSTACKINFO {

long maxstack, maxheap;

} STACKINFO;

The abstract machine allows a host application to set one or more “user values”.
In the current implementation of the abstract machine, up to four user values may
be used. To indicate which of the user values you want to access, it is convenient
to use the macro AMX_USERTAG with a four-letter identification string. In this
example, the identification characters are ‘S’,‘t’,‘c’,‘k’.

The monitor function only retrieves a pointer to the stackinfo structure and
updates its fields. Elsewhere in the program, before the call to amx_Exec, the
following lines are present to initialize the variable and set its address as a user
value:

STACKINFO stackinfo;

memset(&stackinfo, 0, sizeof stackinfo);

err = amx_SetUserData(&amx, AMX_USERTAG(’S’,’t’,’c’,’k’), &stackinfo);

As you will probably want to monitor the stack usage from the start, the debug
hook has also to be set up before calling amx_Exec. Setting up the debug hook is
covered on page 10.

• Preparing for memory-hungry scripts

The core run-time files that build the abstract machine executor (AMX.C and
AMXEXEC.ASM) are specifically designed not to use dynamic memory or to rely
on a particular memory allocator.∗ The reasoning behind this design is that
the abstract machine executor is made to be linked into host applications and,
in practice, diverse host applications use dissimilar memory allocation schemes
—from instrumented versions of malloc to garbage collection algorithms.

∗
There are a few “violations” of this design: the “property” functions in AMXCORE.C call

“malloc”; that said, native functions are considered non-core functions.

Using the abstract machine � 15

The drawback of this design, however, is that the address range that a compiled
script runs in cannot easily grow: the executor itself cannot grow the memory
block because it knows nothing about the memory allocator that the host program
uses, and the host program will have to reach into the internals of the abstract
machine executor after it resizes the memory block. Already determining when to
grow the block is involved. Hence, the address range that a script can use should
be seen as “fixed” or static.

The problem is that the host application cannot foresee what kind of scripts users
For “#pragma
dynamic” and
compiler options:
see the Pawn
booklet “The
Language”

will write and how much breathing room their scripts need. A user may set this
value him/herself with #pragma dynamic, but this involves guesswork and it is
not user friendly. When the host program also runs the compiler, it can set the
heap/stack size to a value that is large enough for every imaginable script, but
at the risk that expanding the memory footprint of the host program by this size
impacts the general performance of the complete system (read “causes excessive
swapping”).

Modern operating systems allow for an efficient solution for this dilemma: allocate
the memory address range without reserving the memory and subsequently reserve
(or “commit”) the memory on an as-needed basis. The code snippets in this
section are for the “Win32” family of Microsoft Windows, but the concept applies
to many operating systems that provide virtual memory.

int main(int argc,char *argv[])

{

size_t memsize;

void *program;

AMX amx;

cell ret = 0;

int err;

if (argc != 2 || (memsize = aux_ProgramSize(argv[1])) == 0)

PrintUsage(argv[0]);

program = VirtualAlloc(NULL, memsize, MEM_RESERVE, PAGE_READWRITE);

if (program == NULL)

ErrorExit(NULL, AMX_ERR_MEMORY);

__try {

err = aux_LoadProgram(&amx, argv[1], program);

if (err)

ErrorExit(&amx, err);

amx_ConsoleInit(amx);

err = amx_CoreInit(amx);

if (err)

ErrorExit(&amx, err);

16 � Using the abstract machine

err = amx_Exec(&amx, &ret, AMX_EXEC_MAIN);

if (err)

ErrorExit(&amx, err);

if (ret != 0)

printf("%s returns %ld\n", argv[1], (long)ret);

} __except (prun_CommitMemory(GetExceptionInformation(), program, memsize)){

/* nothing */

} /* try */

amx_ConsoleCleanup(&amx);

amx_CoreCleanup(&amx);

amx_Cleanup(&amx);

VirtualFree(program, memsize, MEM_DECOMMIT);

VirtualFree(program, 0, MEM_RELEASE);

return 0;

}

The above main function is a variation of the one on page 6. Instead of using
malloc and free (indirectly through aux_LoadProgram and aux_FreeProgram),
it calls the Win32 functions VirtualAlloc and VirtualFree. The call to Virtu-

alAlloc reserves an address range, but does not “commit” the memory, meaning
that no memory is allocated at this point. Later, one may commit chunks of
memory inside this address range, with the advantage that one can now specify
the memory address that must be committed. At the end of the program, Vir-
tualFree must be called twice, as the function can only release memory in one
call if it has either been fully committed or fully decommitted. The first call to
VirtualFree decommits all committed memory.

When a program tries to access memory that is not committed, an “access vio-
lation” exception occurs. Function main catches exceptions and handles them in
the function below. Note that the function carefully checks whether it gets an
exception that it can handle. pawn typically accesses elements in cells, so that
is the default size to commit (variable elemsize in the code snippet below), but
this size is adjusted if it would exceed the allocate memory range.

DWORD prun_CommitMemory(struct _EXCEPTION_POINTERS *ep, void *memaddr,

size_t memsize)

{

void *virtaddr;

int elemsize;

if (ep->ExceptionRecord->ExceptionCode != EXCEPTION_ACCESS_VIOLATION)

return EXCEPTION_CONTINUE_SEARCH;

virtaddr = (void*)ep->ExceptionRecord->ExceptionInformation[1];

if (virtaddr < memaddr || virtaddr >= ((char*)memaddr + memsize))

return EXCEPTION_CONTINUE_SEARCH;

Calling “public” functions � 17

elemsize = sizeof(cell);

if ((char*)virtaddr + elemsize > (char*)memaddr + memsize)

elemsize = ((char*)memaddr + memsize) - (char*)virtaddr;

if (VirtualAlloc(virtaddr, elemsize, MEM_COMMIT, PAGE_READWRITE) == NULL)

return EXCEPTION_CONTINUE_SEARCH;

return EXCEPTION_CONTINUE_EXECUTION;

}

With these modifications, a host program (or a user) can now specify a size for the
stack and heap of a few megabytes when compiling a script file, and be assured
that only the memory that the program really uses is ever allocated. Microsoft
Windows commits memory blocks in “pages”, which are 4 kiB in size. That is,
although the above code commits only one cell (4 bytes), a range of 1024 cells
get committed.

A host program may choose to periodically decommit all memory for a running
script, in order to reduce the memory footprint of the script (this is not imple-
mented in the above code snippet).

Another change in main in comparison with the first implementation at page 6
Writing exten-
sion modules: 50
Init/Cleanup
functions: 51

is that it calls the functions amx_ConsoleInit and amx_CoreInit rather than
amx_Register directly. As is explained in the section on writing extension mod-
ules (an extension module is a native function library), it is proposed that an
extension module provides initialization and clean-up functions; the initialization
function registers the native functions.

Calling “public” functions

The implementations presented so far would only call the function main in a
compiled pawn script. Many implementations require multiple entry points and
need to be able to pass input parameters to that entry point. We need two steps
to enable this:
⋄ The script must provide one or more public functions.
⋄ The host program must be adapted to locate the public function and pass its

index (and parameters) to amx_Exec.

To start with the latter step, the host program is adapted so that it finds a
particular public function by name. Function amx_Exec takes an index of a
public function as a parameter; the previous examples used the special constant
AMX_EXEC_MAIN to start with the “main” entry point. If you know the name of

18 � Calling “public” functions

the public function, amx_FindPublic returns its index. For this purpose, include
the snippet below before the call to amx_Exec (it assumes that the name of the
public function is in the variable argv[2]):

err = amx_FindPublic(&amx, argv[2], &index);

if (err)

ErrorExit(&amx, err);

A public function may require input arguments. If so, these must be “pushed”
onto the amx stack prior to calling amx_Exec. For a numeric parameter that is
passed by value, the sequence would be:

cell value = 123;

amx_Push(&amx, value);

amx_Exec(&amx, NULL, index);

Numeric (“passed-by-value”) parameters are removed automatically from the
stack when amx_Exec returns. When the parameter is a reference parameter
or an array (or a string), the memory needs to be explicitly freed after amx_Exec
returns —this gives the host application the ability to inspect the value(s) that
the script stored in these parameters. For example, to pass a string from argv[3]

in the host program to a public function in the abstract machine, use a snippet
like the following:

cell amx_addr;

cell *phys_addr;

/* pass argv[3] as input */

amx_PushString(&amx, &amx_addr, &phys_addr, argv[3], 0, 0);

amx_Exec(&amx, NULL, index);

/* copy the (possibly changed) string out of the AMX (optional) */

char resultstring[128];

amx_StrLen(phys_addr, &length);

if (length < sizeof(resultstring))

amx_GetString(resultstring, phys_addr, 0, UNLIMITED);

/* release the memory */

amx_Release(&amx, amx_addr);

The above snippet passes the string as an “unpacked” string, meaning that in the
script, every cell holds one character. The pawn API (and the pawn language
itself) support “wide characters” for Unicode applications. The above example
assumes a non-Unicode environment —in an Unicode environment the next-to-last
parameter to amx_SetString and amx_GetString should be non-zero.

In addition to storing the input argument on the stack, function amx_PushString

returns two addresses; here stored in amx_addr and phys_addr. The amx_addr

Calling “public” functions � 19

variable contains the memory address relative to the abstract machine —this is
the address that must be passed to amx_Release to free the allocated memory.
The phys_addr variable is a pointer directly into the amx stack that the host
program uses to inspect or copy data out of the abstract machine after amx_Exec
returns. In this example, the host program calls amx_GetString to store the
string that the script modified into a local variable.

If a public function has a variable argument list, all parameters in this list must
See the Pawn
booklet “The
Language” for
details on vari-
able arguments

be passed by reference. That is, you have to follow the above procedure for
any argument that falls in the variable argument list of the public function. For
reference arguments, pass an array with a size of one cell.

Below is the complete main function of a run-time that allows you to execute
any public function and pass in a string. This program is, again, a modification
of the example program on page 6. It includes the calls to amx_FindPublic

and amx_PushString mentioned above, and it also shows how to pass one extra
parameter through amx_Exec.

int main(int argc,char *argv[])

{

size_t memsize;

void *program;

AMX amx;

int index, err;

cell amx_addr, *phys_addr;

char output[128];

if (argc != 4 || (memsize = prun_ProgramSize(argv[1])) == 0)

PrintUsage(argv[0]);

program = malloc(memsize);

if (program == NULL)

ErrorExit(NULL, AMX_ERR_MEMORY);

err = prun_LoadProgram(&amx, argv[1], program);

if (err)

ErrorExit(&amx, err);

amx_ConsoleInit(&amx);

err = amx_CoreInit(&amx);

if (err)

ErrorExit(&amx, err);

err = amx_FindPublic(&amx, argv[2], &index);

if (err)

ErrorExit(&amx, err);

err = amx_PushString(&amx, &amx_addr, &phys_addr, argv[3], 0, 0);

if (err)

ErrorExit(&amx, err);

20 � Calling “public” functions

err = amx_Exec(&amx, NULL, index);

if (err)

ErrorExit(&amx, err);

amx_GetString(output, phys_addr, 0, UNLIMITED);

amx_Release(&amx, amx_addr);

printf("%s returns \"%s\"\n", argv[1], output);

amx_ConsoleCleanup(&amx);

amx_CoreCleanup(&amx);

amx_Cleanup(&amx);

free(program);

return 0;

}

When the program returns from amx_Exec, the host program can inspect the re-
turned value(s) and free the allocated space. The program presented here uses
amx_GetString to retrieve the string that the public function (possibly) modi-
fied. The function amx_Release frees the memory allocated by amx_PushString.
When you pass in multiple string or array arguments to a public function, a single
call to amx_Release can free all allocated memory, see the function description
at page 42.

To demonstrate this program, we must also write a script that contains a public
function and that accepts a string parameter. Below is a variation of the “ROT13”
example script from the pawn booklet “The Language”. The essential modifica-
tion is the keyword public that is prefixed to the function name “rot13” —and
the removal of the main function which has now become redundant.

public rot13(string[])

{

for (new index = 0; string[index]; index++)

if (’a’ <= string[index] <= ’z’)

string[index] = (string[index] - ’a’ + 13) % 26 + ’a’

else if (’A’ <= string[index] <= ’Z’)

string[index] = (string[index] - ’A’ + 13) % 26 + ’A’

}

With these modifications, and supposing that we have built the C program to an
executable with the name “pawnrun”, we can execute the script with:

pawnrun rot13.amx rot13 hello-world

Essentially the same procedure as outlined above applies to the passing of non-
string arrays to a public function:

1 pass the array to the abstract machine with amx_PushArray;

2 call the public function;

Calling “public” functions � 21

3 optionally copy the array back, out of the abstract machine —using the “phys-
ical address” pointer that amx_PushArray returned;

4 free the memory block in the abstract machine with amx_Release, passing it
the “amx address” pointer that amx_PushArray also returned.

The implementation of “pawnrun” that calls the ROT13 script (page 19) uses the
functions amx_SetString and amx_GetString to copy strings into and out of the
abstract machine. The reasons for using these functions has to do with the differ-
ence in memory layout of strings in C/C++ versus pawn. When passing arrays
of integers (cell-sized) or floating point values, you can just use the standard C
functions memmove and memcpy.

For an example, imagine a host application that does some statistical processing
of lists of floating point numbers, and that allows users of the application to “cus-
tomize” the operation by providing an alternative implementation of key routines
in a pawn script. In particular, the host application allows user to override the
“mean” calculation with a script that contains the public function CalculateMean

with the following signature:

public Float: CalculateMean(Float: values[], items)

This is what the host application does (I am showing only a snippet of code here,
rather than a complete implementation of a C/C++ function; refer to page 19 for
the context of this snippet):

float Mean; /* the variable holding the result of the calculation */

float Values[]; /* array with the numbers to get the mean of */

int Number; /* number of elements in "Values" */

AMX amx; /* the abstract machine, already initialized */

int index, err;

cell amx_addr;

err = amx_FindPublic(&amx, "CalculateMean", &index);

if (err != AMX_ERR_NONE) {

/* custom function not present, use a built-in function to

* calculate the mean

*/

Mean = CalculateStdMean(Values, Number);

} else {

/* 1. push the second argument to the public function first (arguments

* must be pushed in reverse order)

*/

amx_Push(&amx, Number);

22 � Calling “public” functions

/* 2. allocate memory in the abstract machine; I pass NULL as

* the "physical address" pointer because the array is not

* copied back on return (see step 4) */

err = amx_PushArray(&amx, &amx_addr, NULL, Values, Number);

if (err == AMX_ERR_NONE) {

/* 3. call the public function with the "AMX address" */

err = amx_Exec(&amx, (cell*)&Mean, index);

if (err != AMX_ERR_NONE)

printf("Run time error %d on line %ld\n", err, amx.curline);

/* 4. we could copy the array back here, but it is not very

* useful in this particular case */

/* 5. release memory in the abstract machine */

amx_Release(&amx, amx_addr);

} else {

printf("Failed to allocate %d cells\n", Number);

Mean = 0.0;

} /* if */

} /* if */

This example may appear to serve a bizarre purpose: “Why have the user cus-
tomize the mean function? What kind of alternative mean function can a user
invent that is not absurd or fraudulent?” —until you dive into the subject and
discover a full and complex world behind a simple concept as “the mean”. The
most well known and most frequently used kind of average, which has become
synonymous with the mean, is the “arithmetic average”:∗ the sum of all elements
divided by the number of elements. It is well known that the arithmetic average is
sensitive to outliers, e.g. coming from noisy data, and in such cases the “median”
is often proposed as a stable alternative to the (arithmetic) mean.

The median and the mean are the two extremities of the (arithmetic) “trimmed
mean”. The trimmed mean throws out the lowest and the highest few samples and
calculates the arithmetic average over the remainder. The number of discarded
samples is a parameter of the trimmed mean function: if you discard zero samples
what you get is the standard mean and if you discard all but one sample, the
remaining sample is the median.

The example implementation of a trimmed mean below discards only the top and
bottom samples. This particular configuration of the trimmed mean has become

∗
Other kinds are the geometric average, the harmonic average and the “root mean square”.

Function reference � 23

known as the “Olympic mean”, referring to a similar procedure that has in the
past been used to establish the average performance of athletes.

#include <float>

public Float: CalculateMean(Float: values[], items)

{

/* return a "trimmed mean" by throwing out the minimum and

* the maximum value and calculating the mean over the remaining

* items

*/

assert items >= 3 /* should receive at least three elements */

new Float: minimum = values[0]

new Float: maximum = values[0]

new Float: sum = 0.0

for (new i = 0; i < items; i++)

{

if (minimum > values[i])

minimum = values[i]

else if (maximum < values[i])

maximum = values[i]

sum += values[i]

}

return (sum - minimum - maximum) / (items - 2)

}

This concludes handling array and string arguments to a public function by the
host application; what is left are reference arguments. This does not need an
in-depth discussion, however, because the host application can handle a reference
argument as an array argument with the size of one (1) cell.

Function reference

With one exception, all functions return an error code if the function fails (the See page 48 for
the defined error
codes.

exception is amx_NativeInfo). A return code of zero means “no error”.

24 � amx Align16/32/64

amx Align16/32/64 Conditionally swap bytes in a 16-bit, 32-bit or 64-bit word

Syntax: uint16 t *amx Align16(uint16 t *v)

uint32 t *amx Align32(uint32 t *v)

uint64 t *amx Align64(uint64 t *v)

v A pointer to the 16-bit value, the 32-bit value or the
64-bit value whose bytes must be aligned.

Notes: Multi-byte fields in the header in the compiled file are in Little
Endian format. If run on a Big Endian architecture, these two
functions function swap the bytes in a 16-bit/32-bit/64-bit Little
Endian word. The value v remains unchanged if the code runs on
a Little Endian CPU, so there is no harm in always calling this
function.

The amx_Align64 is not available in all configurations. If the pawn
Abstract Machine was built with for a 16-bit architecture, it is likely
absent.

See also: amx_AlignCell

amx AlignCell Conditionally swap bytes in a cell

Syntax: [cell] *amx AlignCell([cell] *v)

v A pointer to the “cell” value whose bytes must be
aligned.

Notes: This macro maps to function amx_Align16 when a cell is 16-bit,
to function amx_Align32 when a cell is 32-bit, and to function
amx_Align64 when a cell is 64-bit.

See also: amx_Align16, amx_Align32, amx_Align64

amx Allot � 25

amx Allot Reserve heap space in the abstract machine

Syntax: int amx Allot(AMX *amx,int cells,cell *amx addr,

cell **phys addr)

amx The abstract machine.

cells The number of cells to reserve.

amx addr The address of the allocated cell as the pawn program
(that runs in the abstract machine) can access it.

phys addr The address of the cell for C/C++ programs to access.

Notes: In earlier releases of pawn, arrays and strings had to be passed to
a script after explicitly allocating memory for it on the amx stack.
In the current release, this functionality has been largely replaced
by the functions amx_PushArray and amx_PushString.

A pawn function can only access memory inside its abstract ma-
chine. If a parameter is to be passed “by reference” to a pawn
function, one must pass the address of that parameter to amx_Exec.
In addition, that address itself must be within the address range of
the abstract machine too. An added complexity is that the abstract
machine uses addresses that are relative to the data section of the
abstract machine, and the host program uses address relative to the
environment that the operating system gives it.

amx_Allot allocates memory cells inside the abstract machine and
it returns two addresses. The amx_addr parameter is the address of
the variable relative to the “data section” of the abstract machine;
this is the value you should pass to amx_Exec (via amx_Push). Pa-
rameter phys_addr holds the address relative to the host program’s
address space. So a C/C++ program can use this address and write
into the allocated memory.

After amx_Exec returns, you may inspect the memory block (the
pawn function called by amx_Exec may have written into it) and
finally release it by calling amx_Release.

See also: amx_Exec, amx_PushArray, amx_PushString, amx_Release

26 � amx Callback

amx Callback The default callback

Syntax: int amx Callback(AMX *amx, cell index, cell *result,

const cell *params)

amx The abstract machine.

index Index into the native function table; it points to the
requested native function.

result The function result (of the native function) should be
returned through this parameter.

params The parameters for the native function, passed as a
list of long integers. The first number of the list is the
number of bytes passed to the native functions (from
which the number of arguments can be computed).

Returns: The callback should return an error code, or zero for no error. When
See page 48 for
the defined error
codes.

the callback returns a non-zero code, amx_Exec aborts execution.

Notes: The abstract machine has a default callback function, which works
in combination with amx_Register. You can override the default
operation by setting a different callback function using function
amx_SetCallback.

If you override the default callback function, you may also need to
provide an alternative function for amx_Registers.

See also: amx_Exec, amx_RaiseError, amx_SetCallback

amx Clone Clone an abstract machine

Syntax: int amx Clone(AMX *amxClone, AMX *amxSource, void *data)

amxClone The new abstract machine. This variable is initialized
with the settings of the amxSource abstract machine.
Before calling this function, all fields of the amxClone

structure variable should be set to zero.

amx ctof � 27

amxSource The abstract machine whose code is to be shared with
the cloned abstract machine and whose data must be
copied. This abstract machine has to be initialized
(with amx_Init).

data The memory block for the cloned abstract machine.
This block must hold the static (global) data, the
stack and the heap.

Notes: Use amx_MemInfo to query the size of the static data and the stack/
heap of the source abstract machine. The memory block to allocate
for the data parameter should have a size that is the sum of the
global data and the stack/heap size.

The cloned abstract machine has a separate data section and a sepa-
rate stack, but it shares the executable code with the source abstract
machine. The source abstract machine should not be deleted while
any cloned abstract machines might still be active.

The state of the data section (the global and static variables) are
copied from the source abstract machine to the clone at the time that
amx_Clone is called. If the source abstract machine has modified
any global/static variables before it is cloned, the clone will have
these values as its initial state. In practice, it may be advisable not
to “run” the source abstract machine at all, but to use it only for
cloning and run the clones.

See also: amx_Init, amx_MemInfo

amx ctof Cast “cell” to “float”

Syntax: [float] amx ctof([cell] c)

c The value to cast from “cell” type to “float”.

Returns: The same bit pattern, but now as a floating point type.

28 � amx Exec

Notes: This macro casts a “cell” type into a “float” type without changing
the bit pattern. A normal type cast in C/C++ changes the memory
representation of the expression so that its numeric value in IEEE
754 format comes closest to the original integer value. The pawn
parser and abstract machine store floating point values in a cell —
when retrieving a floating point value from a cell, the bit pattern
must not be changed.

See also: amx_ftoc

amx Exec Run code

Syntax: int amx Exec(AMX *amx, long *retval, int index)

amx The abstract machine from which to call a function.

retval Will hold the return value of the called function upon
return. This parameter may be NULL if you are not
interested in the return value.

index An index into the “public function table”; it indicates
the function to execute. See amx_FindPublic for more
information. Use AMX_EXEC_MAIN to start executing
at the main function, and AMX_EXEC_CONT to continue
execution from a “sleep state”.

Notes: This function runs the script, starting at the indicated function. It
calls the callback function for any native function call that the code
in the amx makes. amx_Exec assumes that all native functions are
correctly initialized with amx_Register.

See also: amx_FindPublic, amx_Register

amx FindNative Return the index of a native function

Syntax: int amx FindNative(AMX *amx, char *funcname, int *index)

amx The abstract machine.

funcname The name of the native function to find.

amx FindPubVar � 29

index Upon return, this parameter holds the index of the
requested native function.

Notes: The returned index is the same as what the abstract machine would
pass to amx_Callback.

See also: amx_Callback, amx_FindPublic, amx_GetNative,
amx_NumNatives

amx FindPublic Return the index of a public function

Syntax: int amx FindPublic(AMX *amx, char *funcname, int *index)

amx The abstract machine.

funcname The name of the public function to find.

index Upon return, this parameter holds the index of the
requested public function.

See also: amx_Exec, amx_FindNative, amx_FindPubVar, amx_GetPublic,
amx_NumPublics

amx FindPubVar Return the address of a public variable

Syntax: int amx FindPubVar(AMX *amx, char *varname,

cell *amx addr)

amx The abstract machine.

varname The name of the public variable to find.

amx addr Upon return, this parameter holds the variable ad-
dress relative to the abstract machine.

Notes: The returned address is the address relative to the “data section”
in the abstract machine. Use amx_GetAddr to acquire a pointer to
its “physical” address.

See also: amx_FindPublic, amx_GetAddr, amx_GetPubVar, amx_NumPubVars

30 � amx Flags

amx Flags Return various flags

Syntax: int amx Flags(AMX *amx,unsigned short *flags)

amx The abstract machine.

flags A set of bit flags is stored in this parameter. It is a
set of the following flags:
AMX FLAG DEBUG if the program carries symbolic in-

formation
AMX FLAG COMPACTif the program is stored in “com-

pact encoding”
AMX FLAG BYTEOPCopcodes have the size of one byte

rather than of a cell
AMX FLAG NOCHECKSif the compiled P-code does not in-

clude break opcodes, line number
information or run-time (bounds)
checks

Notes: A typical use for this function is to check whether the compiled
program contains symbolic (debug) information. There is may not
be much use in running a debugger without having symbolic in-
formation for the program to debug; if the program does not even
have contain break opcodes, installing a debugger callback may be
skipped altogether.

amx ftoc Cast “float” to “cell”

Syntax: [cell] amx ftoc([float] f)

f The value to cast from “float” type to “cell”.

Returns: The same bit pattern, but now as a “cell” type.

Notes: This macro casts a “float” type into a “cell” type without changing
the bit pattern. A normal type cast in C/C++ changes the memory
representation of the expression so that its numeric value in integer
format is the integral (truncated) value of the original rational value.
The pawn parser and abstract machine store floating point values in
a cell —when storing a floating point value in a cell, the bit pattern
must not be changed.

amx GetNative � 31

See also: amx_ctof

amx GetAddr Resolve an AMX address

Syntax: int amx GetAddr(AMX *amx,cell amx addr,cell **phys addr)

amx The abstract machine.

amx addr The address relative to the abstract machine.

phys addr A pointer to the variable that will hold the memory
address of the indicated cell. If the amx_addr parame-
ter is not a valid address inside the abstract machine,
phys_addr will be set to NULL.

Notes: This function returns the memory address of an address in the ab-
stract machine. One typically uses this function in an extension
module, because it allows you to access variables inside the abstract
machine.

amx GetNative Return a native function name

Syntax: int amx GetNative(AMX *amx, int index, char *funcname)

amx The abstract machine.

index The index of the requested function. Use zero to re-
trieve the name of the first native function.

funcname The string that will hold the name of the native func-
tion.

Notes: The string should be large enough to hold longest function name
plus the terminating zero byte. Use amx_NameLength to inquire
this length.

See also: amx_FindNative, amx_GetPublic, amx_NameLength,
amx_NumNatives

32 � amx GetPublic

amx GetPublic Return a public function name

Syntax: int amx GetPublic(AMX *amx, int index, char *funcname)

amx The abstract machine.

index The index of the requested function. Use zero to re-
trieve the name of the first public function.

funcname The string that will hold the name of the public func-
tion.

Notes: The string should be large enough to hold longest function name
plus the terminating zero byte. Use amx_NameLength to inquire
this length.

See also: amx_FindPublic, amx_GetPubVar, amx_NameLength,
amx_NumPublics

amx GetPubVar Return a public variable name and address

Syntax: int amx GetPubVar(AMX *amx, int index, char *varname,

cell *amx addr)

amx The abstract machine.

index The index of the requested variable. Use zero to re-
trieve the name and address of the first public variable.

varname The string that will hold the name of the public vari-
able.

amx addr Upon return, this parameter holds the variable ad-
dress relative to the abstract machine.

Notes: The string should be large enough to hold longest variable name
plus the terminating zero byte. Use amx_NameLength to inquire
this length.

The returned address is the address relative to the “data section”
in the abstract machine. Use amx_GetAddr to acquire a pointer to
its “physical” address.

See also: amx_FindPubVar, amx_GetAddr, amx_GetPublic,
amx_NameLength, amx_NumPubVars

amx GetUserData � 33

amx GetString Retrieve a string from the abstract machine

Syntax: int amx GetString(char *dest, cell *source, int

use wchar, size t size)

dest A pointer to a character array of sufficient size to hold
the converted source string.

source A pointer to the source string. Use amx_GetAddr to
convert a string address in the amx to the physical
address.

use wchar A non-zero value interprets the dest argument as a
pointer to “wide characters” —i.e. wchar_t, regard-
less of its char type. This allows the function to store
Unicode strings.

size The maximum number of characters to store in dest,
including the terminating zero byte. If the string in
the source is longer, the string in dest will be trun-
cated.

Notes: This function converts both packed strings and unpacked strings
from the “pawn” format to the “C” format. When retrieving an
unpacked string with parameter use_wchar set to zero, the function
may truncate characters from wide characters to 8-bit ASCII/ANSI.

See also: amx_SetString

amx GetUserData Return general purpose user data

Syntax: int amx GetUserData(AMX *amx, long tag, void **ptr)

amx The abstract machine.

tag The “tag” of the user data.

ptr Will hold a pointer to the requested user data upon
return.

34 � amx Init

Notes: The amx stores multiple “user data” fields. Each field must have a
unique tag. The tag may be any value (as long as it is unique), but
it is usually formed by a four-letter mnemonic through the macro
AMX_USERTAG.

The amx does not use “user data” in any way. The storage can be
used for any purpose.

See also: amx_SetUserData

amx Init Create an abstract machine, load the binary file

Syntax: int amx Init(AMX *amx, void *program)

amx This variable is initialized with the specific settings of
the abstract machine. Before calling this function, all
fields of the amx structure variable should be set to
zero, or be explicitly initialized to relevant values (see
the notes).

program A pointer to the P-code stream of the program. This
memory block should remain valid while the abstract
machine is in use.

Notes: amx_Init initializes the abstract machine with the settings from the
binary file. The binary file must be stored in parameter program.

To have the abstract machine run with the default parameters, set
See appendix H
for ROM support the amx structure variable to all zeros before calling this function.

When the program parameter refers to a block of non-modifiable
memory (running from ROM), however, you should initialize the
data field of the amx structure to a separate memory block that
resides in RAM.

See also: amx_Cleanup, amx_InitJIT

amx InitJIT � 35

amx InitJIT Compile an abstract machine to native code

Syntax: int amx InitJIT(AMX *amx, void *reloc table, void

*native code)

amx The abstract machine, that must already have been
initialized with amx_Init.

reloc table A pointer to a block that the JIT compiler can use
to create the relocation table. This block is only used
during JIT compilation and may be freed as soon as
the amx_InitJIT function returns. The size of the
block must be at least amx->reloc_size bytes.

native code A pointer to a block that will hold the native code
after this function returns. This pointer must be set
as the new “base” pointer of the abstract machine (see
the notes below).

Notes: Function amx_Init fills in two fields in the AMX structure that are
needed for JIT compilation: code_size and reloc_size. Both
fields are sizes of buffers that must be allocated for amx_InitJIT.
The abstract machine will be compiled into the block native_code,
which must have the size code_size (or larger) and the JIT compiler
needs an auxiliary block during compilation, which is reloc_table
with the size reloc_size.

The host application is responsible for allocating and freeing the
required blocks.

Function amx_Init gives a conservative minimal estimate of the re-
quired code size for the native instructions —meaning that this value
is (or should be) always too large. Function amx_InitJIT adjusts
the code_size field to the accurate value. After the amx_InitJIT

function returns, the compiled code needs to be attached to the amx
structure, and you may want to shrink the memory block to the
accurate size before doing so. To attach the native code to the ab-
stract machine, assign the native_code pointer to the “base” field
of the amx structure.

On some architectures, the memory block for native_code must
furthermore have the appropriate privileges to execute machine in-
structions. See page 80 for details.

36 � amx MemInfo

See also: amx_Init

amx MemInfo Return memory size information

Syntax: int AMXAPI amx MemInfo(AMX *amx, long *codesize, long

*datasize, long *stackheap)

amx The abstract machine.

codesize Will hold the size of the executable code plus the code
header upon return. See appendix D for a description
of the header.

datasize Will hold the size of the global/static data upon re-
turn.

stackheap Will hold the combined (maximum) size of the of the
stack and the heap upon return.

Notes: All sizes are in bytes.

The stack and the heap share a memory region; the stack grows
towards the heap and the heap grows towards the stack.

See also: amx_Clone

amx NameLength Return the maximum name length

Syntax: int amx NameLength(AMX *amx, int *length)

amx The abstract machine.

length Will hold the maximum name length upon return.
The returned value includes the space needed for the
terminating zero byte.

See also: amx_GetPublic, amx_GetPubVar

amx NumNatives � 37

amx NativeInfo Return a structure for amx Register

Syntax: AMX NATIVE INFO *amx NativeInfo(char *name, AMX NATIVE

func)

name The name of the function (as known to the pawn pro-
gram)

func A pointer to the native function.

Returns: A pointer to a static record (this record is overwritten on every call;
it is not thread-safe).

Notes: This function creates a list with a single record for amx_Register.
To register a single function, use the code snippet (where my_solve

is a native function):

err = amx_Register(amx, amx_NativeInfo("solve", my_solve), 1);

See also: amx_Register

amx NumNatives Return the number of native functions

Syntax: int amx NumNatives(AMX *amx, int *number)

amx The abstract machine.

number Will hold the number of native functions upon return.

Notes: The function returns number of entries in the file’s “native func-
tions” table. This table holds only the native functions that the
script refers to (i.e. the function that it calls). To retrieve the func-
tion names, use amx_GetNative.

See also: amx_GetNative, amx_NumPublics

38 � amx NumPublics

amx NumPublics Return the number of public functions

Syntax: int amx NumPublics(AMX *amx, int *number)

amx The abstract machine.

number Will hold the number of public functions upon return.

Notes: The function returns number of entries in the file’s “public func-
tions” table. To retrieve the function names, use amx_GetPublic.

See also: amx_GetPublic, amx_NumPubVars

amx NumPubVars Return the number of public variables

Syntax: int amx NumPubVars(AMX *amx, int *number)

amx The abstract machine.

number Will hold the number of public variables upon return.

Notes: The function returns number of entries in the file’s “public variables”
table. To retrieve the variable names, use amx_GetPubVar.

See also: amx_GetPubVar, amx_NumPublics

amx Push Pass a numeric argument “by-value”

Syntax: int amx Push(AMX *amx, cell value)

amx The abstract machine.

value The value to pass to the public function.

Notes: Any parameters to a public function must be pushed to the func-
tion before calling amx_Exec. If a public function has multiple ar-
guments, the arguments must be pushed int reverse order.

See also: amx_Exec, amx_PushArray, amx_PushString

amx PushString � 39

amx PushArray Pass an argument or array “by-reference”

Syntax: int amx PushArray(AMX *amx, cell *amx addr, cell

**phys addr, const cell array[], int

numcells)

amx The abstract machine.

amx addr The address of the allocated cell as the pawn pro-
gram (that runs in the abstract machine) can access
it, needed to release the memory block. This param-
eter may be NULL.

phys addr The address of the cell for C/C++ programs to access.
This parameter may be NULL.

array The array of values to pass to the public function. A
single cell that must be passed by-reference is regarded
as a single-cell array.

numcells The number of elements in the array.

Notes: Any parameters to a public function must be pushed to the func-
tion before calling amx_Exec. If a public function has multiple ar-
guments, the arguments must be pushed int reverse order.

The function allocates memory for the array inside the “heap” of the
abstract machine. This memory must be freed with amx_Release.
See function amx_Allot for details on the parameters amx_addr and
phys_addr.

See also: amx_Exec, amx_Push, amx_PushString, amx_Release

amx PushString Pass a string argument

Syntax: int amx PushString(AMX *amx, cell *amx addr, cell

**phys addr, const char *string, int

pack, int use wchar)

amx The abstract machine.

40 � amx PushString

amx addr The address of the allocated cell as the pawn pro-
gram (that runs in the abstract machine) can access
it, needed to release the memory block. This param-
eter may be NULL.

phys addr The address of the cell for C/C++ programs to access.
This parameter may be NULL.

string The string to pass to the public function.

pack Non-zero to convert the source string to a packed
string in the abstract machine, zero to convert the
source string to a cell string.

use wchar A non-zero value interprets the string argument as
a pointer to “wide characters” —i.e. wchar_t, regard-
less of its char type. This allows the function to ac-
cept Unicode strings.

Notes: Any parameters to a public function must be pushed to the func-
tion before calling amx_Exec. If a public function has multiple ar-
guments, the arguments must be pushed int reverse order.

The function allocates memory for the array inside the “heap” of the
abstract machine. This memory must be freed with amx_Release.
See function amx_Allot for details on the parameters amx_addr and
phys_addr.

When you pass in an Unicode string and request a packed format in
the abstract machine (i.e. both pack and use_wchar are true), the
characters are truncated to 8-bits.

See also: amx_Exec, amx_Push, amx_PushArray, amx_Release,
amx_SetString

amx Register � 41

amx RaiseError Flag an error

Syntax: int amx RaiseError(AMX *amx, int error)

amx The abstract machine.

error The error code. This is the code that amx_Exec re-
turns.

Notes: This function should be called from a native function. It lets the
default callback routine return an error code.

amx Register Make native functions known

Syntax: int amx Register(AMX *amx, AMX NATIVE INFO *list, int

number)

amx The abstract machine.

list An array with structures where each structure holds
a pointer to the name of a native function and a func-
tion pointer. The list is optionally terminated with a
structure holding two NULL pointers.

number The number of structures in the list array, or -1 if the
list ends with a structure holding two NULL pointers.

Notes: On success, this function returns 0 (AMX_ERR_NONE). If this func-
tion returns the error code AMX_ERR_NOTFOUND, one or more native
functions that are used by the pawn program are not found in the
provided list. You can call amx_Register again to register addi-
tional function lists.

To check whether all native functions used in the compiled script
have been registered, call amx_Register with the parameter list

set to NULL. This call will not register any new native functions, but
still return AMX_ERR_NOTFOUND if any native function is unregistered.

See also: amx_NativeInfo

42 � amx Release

amx Release Free heap space in the abstract machine

Syntax: int amx Release(AMX *amx,cell amx addr)

amx The abstract machine.

amx addr The address of the allocated cell as the pawn pro-
gram (that runs in the abstract machine) sees it. This
value is returned by amx_Allot, amx_PushArray and
amx_PushString.

Notes: amx_Allot allocates memory on the heap in ascending order (the
heap grows upwards). amx_Release frees all memory above the
value of the input parameter amx_addr. That is, a single call to
amx_Release can free multiple calls to amx_Allot if you pass the
amx_addr value of the first allocation.

amx_PushArray and amx_PushString use amx_Allot internally, so
the same procedure applies to these functions as well.

See also: amx_Allot, amx_PushArray, amx_PushString

amx SetCallback Install a callback routine

Syntax: int amx SetCallback(AMX *amx, AMX CALLBACK callback)

amx The abstract machine.

callback The address for a callback function. See function
amx_Callback for the prototype and calling conven-
tion of a callback routine.

Notes: If you change the callback function, you should not use functions
amx_Register or amx_RaiseError. These functions work in com-
bination with the default callback function. To set the default call-
back, set parameter callback to the function amx_Callback.

You may set the callback before or after calling amx_Init.

amx SetString � 43

amx SetDebugHook Install a debug routine

Syntax: int amx SetDebugHook(AMX *amx, AMX DEBUG debug)

amx The abstract machine.

debug The address for a callback function for the debugger.
The prototype and calling convention of a debug hook
routine are:

int AMXAPI CallbackFunction(AMX *amx);

Notes: To disable the debug hook, set the debug parameter to NULL.

amx SetString Store a string in the abstract machine

Syntax: int amx SetString(cell *dest, char *source, int pack,

int use wchar, size t size)

dest A pointer to a character array in the amx where the
converted string is stored. Use amx_GetAddr to con-
vert a string address in the amx to the physical ad-
dress.

source A pointer to the source string.

pack Non-zero to convert the source string to a packed
string in the abstract machine, zero to convert the
source string to a cell string.

use wchar A non-zero value interprets the source argument as
a pointer to “wide characters” —i.e. wchar_t, regard-
less of its char type. This allows the function to ac-
cept Unicode strings.

size The maximum number of cells to store in dest, in-
cluding the terminating zero byte or cell. If the string
in the source is longer than can fit in the number of
cells in dest, it will be truncated.

Notes: When you pass in an Unicode string and request a packed format in
the abstract machine (i.e. both pack and use_wchar are true), the
characters are truncated to 8-bits.

44 � amx SetUserData

See also: amx_GetString

amx SetUserData Set general purpose user data

Syntax: int amx SetUserData(AMX *amx, long tag, void *ptr)

amx The abstract machine.

tag The “tag” of the user data, which uniquely identifies
the user data. This value should not be zero.

ptr A pointer to the user data.

Notes: The amx stores multiple “user data” fields. Each field must have
a unique tag. The tag may be any value (as long as it is unique)
except zero, but it is usually formed by four characters through the
macro AMX_USERTAG.

r = amx_SetUserData(amx, AMX_USERTAG(’U’,’S’,’E’,’R’), "Fire");

The amx does not use “user data” in any way. The storage can be
used for any purpose.

See also: amx_GetUserData

amx StrLen Get the string length in characters

Syntax: int amx StrLen(const cell *cstring, int *length)

cstring The string in the abstract machine.

length This parameter will hold the string length upon re-
turn.

Notes: This function determines the length in characters of the string, not
including the zero-terminating character (or cell). A packed string
occupies less cells than its number if characters.

If the cstring parameter is NULL, the length parameter is set to
zero (0) and the function returns with an error code.

For converting unpacked strings to UTF-8, function amx_UTF8Len

may be more convenient.

amx UTF8Check � 45

See also: amx_GetAddr, amx_GetString, amx_SetString, amx_StrParam,
amx_UTF8Len

amx StrParam Get a string parameter from an abstract machine

Syntax: amx StrParam([AMX*] amx, [int] param, [char*] result)

amx The abstract machine.

param The parameter number.

result A variable that will hold the result on return.

Notes: This macro allocates a block of memory (with alloca) and copies
a string parameter (to a native function) in that block. See page 56
for an example of using this macro.

See also: amx_GetAddr, amx_GetString, amx_StrLen

amx UTF8Check Check whether a string is valid UTF-8

Syntax: int amx UTF8Check(const char *string, int *length)

string A zero-terminated string.

length If the string is a valid UTF-8 string, this parameter
will hold the length of the string (in wide characters,
and excluding the terminating zero character). This
parameter may be NULL in case you do not need the
length.

Notes: The function runs through a zero-terminated string and checks the
validity of the UTF-8 encoding. The function returns an error code,
it is AMX_ERR_NONE if the string is valid UTF-8 (or valid ASCII for
that matter).

If the string is valid UTF-8, you can use the value of parameter
length to allocate enough memory to hold a string that you can
convert with amx_UTF8Get.

See also: amx_UTF8Get, amx_UTF8Put, amx_UTF8Len

46 � amx UTF8Get

amx UTF8Get Decode a character from UTF-8

Syntax: int amx UTF8Get(const char *string, const char **endptr,

cell *value)

string A pointer to the start of an UTF-8 encoded character.

endptr This pointer will point to the UTF-8 character behind
the one that is decoded after the function completes.
As UTF-8 encoding is variable-length, this returned
value is useful when decoding a full string character
by character. This parameter may be NULL.

value A pointer to the “wide” character that has the value
of the decoded UTF-8 character. This parameter may
be NULL.

Notes: The function returns an error code. On error, endptr points to the
start of the character (the same value as the input value for the
string parameter) and value is set to zero.

See also: amx_UTF8Check, amx_UTF8Put

amx UTF8Len Return the length of the string in UTF-8 encoding

Syntax: int amx UTF8Len(const cell *string, int *length)

string A zero-terminated string. This should normally be an
unpacked string.

length Upon return of the function, this parameter holds the
number of bytes that are needed to store the string in
UTF-8 encoding, excluding the zero terminator. If the
input string is a packed string, the returned length is
the same as the string length —packed strings should
not be UTF-8 encoded.

Notes: If the cstring parameter is NULL, the length parameter is set to
zero (0) and the function returns with an error code.

See also: amx_StrLen, amx_UTF8Check

amx UTF8Put � 47

amx UTF8Put Encode a character into UTF-8

Syntax: int amx UTF8Put(char *string, char **endptr, int

maxchars, cell value)

string A pointer to the string that will hold the UTF-8 en-
coded character. This parameter may not be NULL.

endptr This pointer will point directly behind the encoded
UTF-8 character after the function completes. As
UTF-8 encoding is variable-length, this returned value
is useful when encoding a sequence of Unicode/UCS-4
characters into an UTF-8 encoded string. This param-
eter may be NULL.

maxchars The maximum number of characters that the function
may use. An UTF-8 character is between 1 and 6 bytes
long. If the character value in the parameter value

is restricted to the Basic Multilingual Plane (16-bits
Unicode), the encoded length is between 1 and 3 bytes.

value The “wide” character with the value to be encoded as
an UTF-8 character.

Notes: The function returns an error code if the parameter maxchars is
lower than the required number of bytes for the UTF-8 encoding;
in this case nothing is stored in the string parameter.

The function does not zero-terminate the string.

Character values that are invalid in Unicode/UCS-4 cannot be en-
coded in UTF-8 with this routine.

See also: amx_UTF8Check, amx_UTF8Get

48 � aux StrError

aux StrError Get a text description of an error

Syntax: char *aux StrError(int errnum)

errnum The error number.

Notes: This function returns a pointer to a static string with a description
Error numbers:
48 of the error number errnum.

A few “error” codes, like AMX_ERR_SLEEP, do not really denote an er-
ror situation. For those error codes and for invalid values of errnum,
the function returns a description that is enclosed in parentheses.

Error codes

AMX ERR NONE (0)
No error.

AMX ERR EXIT (1)
Program aborted execution. This is usually not an error.

AMX ERR ASSERT (2)
A run-time assertion failed.

AMX ERR STACKERR (3)
Stack or heap overflow; the stack collides with the heap.

AMX ERR BOUNDS (4)
Array index is out of bounds.

AMX ERR MEMACCESS (5)
Accessing memory that is not allocated for the program.

AMX ERR INVINSTR (6)
Invalid instruction.

AMX ERR STACKLOW (7)
Stack underflow; more items are popped off the stack than were pushed
onto it.

AMX ERR HEAPLOW (8)
Heap underflow; more items are removed from the heap than were inserted
into it.

AMX ERR CALLBACK (9)
There is no callback function, and the program called a native function.

AMX ERR NATIVE (10)
Native function requested the abortion of the abstract machine.

Error codes � 49

AMX ERR DIVIDE (11)
Division by zero.

AMX ERR SLEEP (12)
The script, or a native function, forced a “sleep”. A host application may
implement a simple kind of co-operative multitasking scheme with the
“sleep” instruction.

AMX ERR INVSTATE (13)
A function was called in a state for which the function is undefined (and
there is no fall-back function).

AMX ERR MEMORY (16)
General purpose out-of-memory error.

AMX ERR FORMAT (17)
Invalid format of the memory image for the abstract machine.

AMX ERR VERSION (18)
This program requires a newer version of the abstract machine.

AMX ERR NOTFOUND (19)
The requested native functions are not found.

AMX ERR INDEX (20)
Invalid index (invalid parameter to a function).

AMX ERR DEBUG (21)
The debugger cannot run (this is an error code that the debug hook may
return).

AMX ERR INIT (22)
The abstract machine was not initialized, or it was attempted to double-
initialize it.

AMX ERR USERDATA (23)
Unable to set user data field (table full), or unable to retrieve the user
data (not found).

AMX ERR INIT JIT (24)
The Just-In-Time compiler failed to initialize.

AMX ERR PARAMS (25)
General purpose parameter error: one of the parameters to a function of
the abstract machine was incorrect (e.g. out of range).

AMX ERR DOMAIN (26)
A “domain error”: the expression result does not fit in the variable that
must hold it. This error may occur in fixed point and floating point
support libraries.

50

Extension modules

An extension module provides a pawn program with application-specific (“na-
tive”) functions. An native function is a function that is implemented in the host
application (as opposed to being implemented in the pawn script) and it is typi-
cally implemented in a different programming language.∗ Creating an extension
module is a three-step process:
1 writing the native functions (in C);
2 making the functions known to the abstract machine;
3 writing an include file that declares the native functions for the pawn pro-

grams.

• 1. Writing the native functions

Every native function must have the following prototype:

cell AMX_NATIVE_CALL func(AMX *amx, const cell *params);

The identifier “func” is a placeholder for a name of your choice. The AMX type
is a structure that holds all information on the current state of the abstract
machine (registers, stack, etc.); it is defined in the include file AMX.H. The symbol
AMX_NATIVE_CALL holds the calling convention for the function. The file AMX.H

defines it as an empty macro (so the default calling convention is used), but
some operating systems or environments require a different calling convention.
You can change the calling convention either by editing AMX.H or by defining the
AMX_NATIVE_CALLmacro before including AMX.H. Common calling conventions are
_cdecl, _far _pascal and _stdcall.

The params argument points to an array that holds the parameter list of the
function. The value of params[0] is the number of bytes passed to the function
(divide by the size of a cell to get the number of parameters passed to the
function); params[1] is the first argument, and so forth.

For arguments that are passed by reference, function amx_GetAddr converts the
“abstract machine” address from the “params” array to a physical address. The
pointer that amx_GetAddr returns lets you access variables inside the abstract
machine directly. Function amx_GetAddr also verifies whether the input address
is a valid address.

∗
The native function interface is technically known as a “foreign function interface”, but this

manual uses the term “native function interface”.

Extension modules � 51

When a native function accepts a variable number of arguments, all arguments in
the “variable argument list” are passed to the native function by reference. Even
(literal) constants that are passed to the function are first stored on a temporary
location on the stack and then the address of that location is passed to the function
—the constant is thereby passed “by reference”.

Strings, like other arrays, are always passed by reference. However, neither packed
See page 113 for
the memory lay-
out of arrays and
page 57 for an
example

strings nor unpacked strings are universally compatible with C strings (on Big
Endian computers, packed strings are compatible with C strings). Therefore, the
abstract machine API provides two functions to convert C strings to and from
pawn strings: amx_GetString and amx_SetString.

A native function may abort a program by calling amx_RaiseError with a non-
zero code. The non-zero code is what amx_Exec returns.

• 2. Linking the functions to the abstract machine

An application uses amx_Register to make any native functions known to the
abstract machine. Function amx_Register expects a list of AMX_NATIVE_INFO

structures. Each structure holds a pointer to the name of the native function and
a function pointer.

Below is a full example of a file that implements two simple native functions:
raising a value to a power and calculating the square root of a value. The list of
AMX_NATIVE_INFO structures is near the bottom of the example —it is wrapped
in an “initialization function” called amx_PowerInit.

/* This file implements two the native functions: power(value,exponent)

* and sqroot(value).

*/

#include "amx.h"

static cell n_power(AMX *amx, cell *params)

{

/* power(value, exponent);

* params[1] = value

* params[2] = exponent

*/

cell result = 1;

while (params[2]-- > 0)

result *= params[1];

return result;

}

52 � Extension modules

static cell n_sqroot(AMX *amx, cell *params)

{

/* sqroot(value);

* params[1] = value

* This routine uses a simple successice approximation algorithm.

*/

cell div = params[1];

cell result = 1;

while (div > result) { /* end when div == result, or just below */

div = (div + result) / 2; /* take mean value as new divisor */

result = params[1] / div;

} /* while */

return div;

}

int amx_PowerInit(AMX *amx)

{

static AMX_NATIVE_INFO power_Natives[] = {

{ "power", n_power },

{ "sqroot", n_sqroot },

{ 0, 0 } /* terminator */

};

return amx_Register(amx, power_Natives, -1);

}

int amx_PowerCleanup(AMX *amx)

{

return AMX_ERR_NONE;

}

In your application, you must add a call to amx_InitPower with the “amx” struc-
ture as a parameter, as shown below:

err = amx_InitPower(&amx);

The first example of “host applications” for the pawn abstract machine called
Example pro-
gram that calls
amx Register: 6

amx_Register directly, referring to the external arrays core_Natives and con-

sole_Natives (being the native function tables). In many situations, the strategy
taken here (calling a function provided by the extension module to handle the na-
tive function registration) is preferable:

⋄ Giving a function “external” scope is safer than doing so with a variable; as
opposed to functions, variables can be (accidentally) tampered with. Observe,
by the way, that only the functions amx_PowerInit and amx_PowerCleanup

have external scope in the above example.

⋄ An extension module may require additional “start-up” code. Doing this in
the same routine that also registers the native functions makes sure that all
initialization steps occur, and in the correct order.

Writing “wrappers” � 53

⋄ An extension module may also require clean-up code. When all extension mod-
ules provide “initialization” and “clean-up” functions, the rules for adding an
extension module to the host application become universal. This is especially
so if there is a naming convention for these initialization and clean-up functions.
For this reason, even though the “power” extension module does not require
any clean-up, an empty clean-up function amx_PowerCleanup was added.

• 3. writing an include file for the native functions

The first step implements the native functions and the second step makes the
functions known to the abstract machine. Now the third step is to make the
native functions known to the pawn compiler. To that end, one writes an include
file that contains the prototypes of the native functions and all constants that
may be useful in relation to the native functions.

#pragma library Power

native power(value, exponent)

native sqroot(value)

The #pragma library line is useful when you create a dynamically loadable
extension module, as described on page 61; it is not required for an extension
module that is statically linked to the host application.

Writing “wrappers”

The preceding sections described the implementation of a few functions that were
specially crafted as “native functions” for the pawn abstract machine. It is com-
mon practice, however, that instead of writing new functions for pawn, you will
make a set of existing C/C++ functions available to pawn. To “glue” the existing
functions to pawn, you need to embed each function in a tiny new function with
the required “native function” signature. Such new functions are called wrapper
functions.

Wrapper functions also illustrate the issues in passing parameters across C/C++–
pawn boundaries, plus that they provide templates for writing any kind of native
functions.

• Pass-by-value, the simplest case

The pawn toolset was designed to make the interface to native functions quick and
easy. To start with an example, I will make a wrapper for the function isalpha

from the standard C library. The prototype for isalpha is:

54 � Writing “wrappers”

int isalpha(int c);

Wrapping isalpha into a native function, results in the code:

static cell n_isalpha(AMX *amx, const cell *params)

{

return isalpha((int)params[1]);

}

In addition to writing the above wrapper function, you must also still add it to a
table for amx_Register and add it to an include file for the pawn compiler.

• Floating point

Wrapping functions like isalpha represent the simplest case: functions that take
parameters with an “integer” type and that return “void” or an integer type.
When either any of the parameters or the return type of the existing function are
a floating point type, these parameters must be cast to/from the “cell” type that
pawn uses —but this cast must happen through a special macro. For example,
consider the function sin with the prototype:

double sin(double angle);

Its wrapper function is:

static cell n_sin(AMX *amx, const cell *params)

{

float r = sin(amx_ctof(params[1]));

return amx_ftoc(r);

}

The symbols amx_ctof and amx_ftoc are macros that cast a “cell” type into
“float” and vice versa, but in contrast to the standard type casts of C/C++ they
do not change the bit representation of the value that is cast. A normal type cast,
therefore, changes the value∗ and what is needed is a cast that leaves the value
intact —which is what amx_ctof and amx_ftoc do.

∗
This behaviour is quite apparent in the cast from floating point to integer, which truncates the

value to its integral part.

Writing “wrappers” � 55

• Strings

Wrapping functions that take string parameters is more involved, because the
memory layout of a string in the pawn abstract machine is probably different than
that of C/C++.† This means that strings must be converted between the native
(wrapper) function and the pawn abstract machine. The standard C function
access has the prototype:

int access(const char *filename, int flags);

Its wrapper function is:

static cell n_access(AMX *amx, const cell *params)

{

int r = 0, length;

cell *cstr;

char *pname;

amx_GetAddr(amx, params[1], &cstr);

amx_StrLen(cstr, &length);

if ((pname = malloc(length + 1)) != NULL) {

amx_GetString(pname, cstr, 0, UNLIMITED);

r = access(pname, (int)params[2]);

free(pname);

} /* if */

return r;

}

When the pawn abstract machine passes an array to a native function, it passes
the base address of the array. This address, however, is relative to the data section
of the abstract machine; it is not a pointer that the native function (in C/C++)
can use as is. The function amx_GetAddr translates an “abstract machine address”
(in params[1] in the above example) to a physical pointer for the host application
(i.e. cstr).

The next step is to convert the string for the format as it is stored in the abstract
machine to what C/C++ understands. Function amx_GetString does that, but
before using it, you have to check the string length first —hence, amx_StrLen.
The last parameter of amx_GetString also allows you to limit the number of
characters stored in the destination; if you know that your buffer is big enough,
you can pass in the constant UNLIMITED for the size. Function amx_GetString

recognizes both packed and unpacked strings, by the way.

†
On a Big Endian CPU platform packed strings have the same memory layout in Pawn and in

C/C++, unpacked strings and all strings on a Little Endian CPU have a different layout.

56 � Writing “wrappers”

If you need to write a string back into the data section of the abstract machine,
you can use the amx_SetString companion function.

When making wrappers by hand, the macro amx_StrParam may be convenient be-
cause it implements the “scaffolding code”. The wrapper for the function access

would become:

static cell n_access(AMX *amx, const cell *params)

{

int r = 0;

char *pname;

amx_StrParam(amx, params[1], pname);

if (pname != NULL)

r = access(pname, (int)params[2]);

return r;

}

The wrapper function uses the C function alloca to allocate memory, instead
of malloc. The advantage of alloca is that memory does not need to be freed
explicitly. Function alloca is not in the ANSI C standard, however, and it may
not be available on your platform.

• Pass-by-reference

C/C++ functions that return values through pointers need a similar wrapping
as strings: pawn does not understand pointers, but it supports call-by-reference.
The example function for this wrapper is the C/C++ function time, with proto-
type:

time_t time(time_t* timer);

I am making the bold assumption that time_t is represented as a 32-bit integer
(which as cell is as well). The wrapper function becomes:

static cell n_time(AMX *amx, const cell *params)

{

time_t r;

cell *cptr;

assert(sizeof(cell) == sizeof(time_t));

amx_GetAddr(amx, params[1], &cptr);

r = time((time_t*)cptr);

return r;

}

Writing “wrappers” � 57

In the above wrapper function, function time writes directly into a memory cell

in the data section of the abstract machine. This is allowed only if the value that
the function writes has the same size as a cell (32-bit). For good measure, the
above wrapper verifies this with an assert statement. If the size that the C/C++

function returns differs from that of a cell, the wrapper function must convert
it to a cell before writing it through the pointer obtained by amx_GetAddr.

• Arrays

For the interface of the abstract machine to the host application, a “reference
parameter” (see the preceding section) is identical to an array with one element.
Writing wrappers for functions that take an array is therefore similar to writing a
function that handles a reference argument. With single dimensional arrays, the
main difference is that the pointer returned by amx_GetAddr now points to the
first cell of potentially many cells.

Multi-dimensional arrays must be handled differently, though, as the memory
Memory lay-out
of arrays: 113lay-out differs between C/C++ and pawn. In comparison with C/C++, two-

dimensional arrays in pawn are prefixed with a single-dimensional array that
holds memory offsets to the start of each “row” in the two-dimensional array.
This extra list allows each row to have a different column length. In C/C++, each
column in a two-dimensional array must have the same size.

If you are writing a wrapper function for an existing C function, as opposed to
writing/adapting a native function specifically to exploit pawn’s features, you will
not be concerned with variable column-length arrays —C/C++ does not support
them, so your native function will not allow them. All that needs to be done,
then, is to skip the prefixed “column offsets” list after getting the address from
amx_GetAddr.

For an example, I use the OpenGL function glMultMatrixf which multiplies a
given 4 × 4 matrix with the current matrix. The prototype of the function is:

void glMultMatrixf(const GLfloat *m);

The wrapper function just has to get the address of its array parameter and add
four cells to them.

static cell n_glMultMatrixf(AMX *amx, const cell *params)

{

cell *cptr;

58 � Writing “wrappers”

assert(sizeof(cell) == sizeof(time_t));

amx_GetAddr(amx, params[1], &cptr);

glMultMatrixf((GLfloat*)(cptr + 4));

return 0;

}

For this example, I selected the OpenGL matrix multiplication function that
accepts a matrix of “float-type” floating point values, because the cell and the
float types are both four bytes (in a common pawn implementation). If you
need to wrap a function that accepts an array of “double-type” values, this array
has to be converted from float to double values —and possibly back to float

after calling the wrapped function.

• Wrapping class methods (C++ interface)

The interface between the abstract machine and C/C++ is based on plain func-
tions. When trying to use a class method as a native function, there is a complex-
ity: a (non-static) class method function must be called with an implicit “this”
parameter, which the abstract machine is unaware of. Hence, the abstract ma-
chine cannot pass this parameter directly and some extra intermediate code is
needed to call a class method.

Reasons why you wish to use class methods as native functions, rather than plain
C/C++ functions are:

1. improved encapsulation,

2. or the ability to bind a different instance of the class to each abstract machine
(when several abstract machines exists concurrently).

In the first case, declaring the class methods and member variables as “static”
is a solution. Static methods do not receive a this parameter, but, in turn, they
cannot access non-static member variables. So the member variables should be
static too.

This section covers the second case: binding an abstract machine to a class in-
stance that is created dynamically. For this binding, the interface needs “forward-
ing” functions that call the appropriate (non-static) class method and a look-up
mechanism to match the required this to the abstract machine. The forwarding
functions might be static methods in the same class. The example below, however,
uses plain functions to wrap a C++ class without modifying the class.

Writing “wrappers” � 59

The wrapper is for an imaginary class that allows writing to “log files”. With this
procedure, each abstract machine will get its own log file. For purpose of showing
the wrapper, the class is kept rather simplistic:

class LogFile {

FILE *f;

public:

LogFile()

{

f = tmpfile();

}

~LogFile()

{

fclose(f);

}

bool write(char *string)

{

int r = fprintf(f, "%s\n", string);

return r > 0;

}

};

When a new abstract machine initializes its “log file” native functions, it must
create a new instance of the class and bind the instance (the this pointer) to the
abstract machine. Later, the wrapping/forwarding function must have a way to
look up this binding —or a way to find the LogFile class instance attached to
the abstract machine. The simplest way to implement this binding is to store a

User data exam-
ple: 13pointer to the class instance in the “user data” of the abstract machine. However,

as the number of user values for an abstract machine is limited, this is not a
general purpose solution: if every extension module (string functions, console
functions, date/time functions, etc) needs a user value, you’ll run out quickly. An
alternative simple method that keeps the binding local to the extension module
is the use of the map container class from the Standard Template Library (STL).
The STL is now part of the C++ standard library, so it is likely to be available
on your system.

static std::map<AMX*, LogFile*> LogFileLookup;

static cell n_write(AMX* amx, cell params[])

{

int r = 0;

char *pstr;

amx_StrParam(amx, params[1], pstr);

std::map<AMX*, LogFile*>::iterator p = LogFileLookup.find(amx);

if (pstr != NULL && p != LogFileLookup.end())

r = p->second->write(pstr);

60 � Writing “wrappers”

return r;

}

extern "C"

int amx_LogFileInit(AMX* amx)

{

LogFile* lf = new LogFile;

if (lf) {

LogFileLookup.insert(std::make_pair(amx, lf));

static AMX_NATIVE_INFO nativelist[] = {

{ "write", n_write },

{ 0, 0 } /* terminator */

};

return amx_Register(amx, nativelist, -1);

} /* if */

return AMX_ERR_MEMORY;

}

extern "C"

int amx_LogFileCleanup(AMX* amx)

{

std::map<AMX*, LogFile*>::iterator p = LogFileLookup.find(amx);

if (p != LogFileLookup.end()) {

delete p->second;

LogFileLookup.erase(p);

} /* if */

return AMX_ERR_NONE;

}

The wrapper function n_write contains the usual code to fetch a string parameter
from the abstract machine (see page 56), and it also looks up the LogFile class
instance for the abstract machine using the map container LogFileLookup. The
function amx_LogFileInit creates the new instance and adds it to the map, in
addition to registering native functions. The “clean up” function for the extension
module does the reverse: it deletes the class instance and removes it from the
map. Note that the amx_LogFileInit and amx_LogFileCleanup functions must
be declared “extern "C"” (but the wrapper function n_write need not be).

The map container from the Standard Template Library is a general purpose
implementation with a fair performance for very small to very large maps. From
the description of the properties of the map, it appears that it uses an auto-
balancing binary tree data structure. If you do not know (or do not control)
how many abstracts machines can run concurrently, the STL map may be a good
choice. On the other hand, if you can make an estimate of the typical number
and/or the maximum number of concurrent abstract machines, you can typically
improve the performance of the look-up by using a data structure that is tailored
to the task and environment. Especially, a hash table can give a nearly constant

Dynamically loadable extension modules � 61

look-up time —meaning that looking up a class instance is equally quick when
there are many concurrent abstract machines as when there are only few. The
performance of a hash table deteriorates quickly when the table fills up, however,
and very large hash tables have a bad overall performance because they do not
fit in processor or disk caches.

Dynamically loadable extension modules

Up to this point, the description for developing extension modules assumed static
linking for the modules. This means that the object code for the modules is
embedded in the same executable program/shared library as the rest of the host
application. Static linking also means that if you wish to add more native func-
tions, or correct a bug in one of the existing native functions, you need access to
the source code of the host application.

The alternative is to build the extension module as a DLL (for Microsoft Win-
dows) or in a shared library (for UNIX/Linux). When set up correctly, amx_Init
will automatically load a dynamically loadable extension module and register its
functions. When done, amx_Cleanup, cleans up the extension module and unloads
it from the operating system.

Apart from freeing you from writing a few lines (you do not have to call the
amx_ModuleNameInit and amx_ModuleNameCleanup functions), the prime ad-
vantage of dynamic loading is that it makes the scripting subsystem of the host
application easily extensible with “plug-in” extension modules. All that an end-
user has to do to extend the scripting environment is to create or download a new
extension module as a DLL/shared library, and to copy it with the associated
include file (for the pawn compiler) to appropriate (system) directories.

To build extension modules for dynamic loading, adhere to the following rules:

⋄ Add a #pragma library ... line to the include file for the pawn compiler. The
pawn compiler uses this #pragma to record which extension modules are actu-
ally referred to from the script. The pawn compiler is smart enough to avoid
including an extension module if the script does not call any of the functions
in that extension module.

⋄ The name of the DLL or shared library must be the same name as the one
mentioned in the #pragma library line, but prefixed with the letters “amx”
and with the extension “ .dll” or “.so”, whichever is appropriate.

62 � Error checking in native functions

⋄ The extension module must at least provide the external/exported function
amx_FilenameInit, where Filename is, again, the name cited at the #pragma

library line. If the library requires clean-up code, it should also provide the
function amx_FilenameCleanup.

For example, when creating the example extension module “Power” from page
51 as a Windows DLL:

• the filename must be “amxPower.dll”;
• the initialization and clean-up functions are must be named amx_PowerInit

and amx_PowerCleanup respectively (that said, a do-nothing routine like
amx_PowerCleanup may also be omitted);

• and the include file has the line “#pragma library Power” near the top
—see also page 53.

⋄ Note that function names are case sensitive (and on Linux, filenames as well).

Please consult you compiler documentation for details for creating a DLL or
a shared library; also look at B for details in building a dynamically loadable
extension module, specifically to the section at page 85.

⋄ For deployment under UNIX/Linux, see also page 6 for an environment variable
that you may need to set.

The flexibility of dynamically loadable extension modules is also the main reason
why you may want to disable this feature: in the interest of security. If all native
functions for your host application are carefully and selectively implemented by
you, you have a good grip on what parts of the host application and of the
operating system the end users can access. With “plug-in” extension modules,
the entire system is effectively open, just as with any plug-in system.

To disable support for dynamically loadable extension modules, compile the ab-
stract machine with the macro AMX_NODYNALOAD defined, see appendix B.

Error checking in native functions

When comparing the wrapper functions for pawn with those for other scripting
languages, you may remark that the wrapper functions for pawn are relatively
small and easy. Notably, pawn wrapper functions lack type and parameter check-
ing that other scripting languages mandate. The wrapper function for isalpha,

isalpha() wrap-
per: 53

for example, does not check the number of parameters that the pawn script passes
in. The wrapper function could have check this number of arguments, because

Customizing the native function dispatcher � 63

pawn passes the number of bytes that the native function receives in params[0],
but in most cases this extra checking is redundant.

The number of parameters that are passed to a native function, and their tags,
should be checked at compile-time, rather than at run-time. Therefore, pawn
requires the definitions of the native functions (in pawn syntax), in addition to
the implementation —this was the third step in the list at the start of the chapter
“Extension modules” (page 50).

It is important that the native function declarations (in an include file) are accu-
glMultMatrixf()
wrapper: 57

rate, and as specific as possible. For example, the native function declaration for
the function glMultMatrixf would be:

native glMultMatrixf(const Float: m[4][4]);

The above declaration declares “m” as a 4×4 array, holding values that must have
the “Float” tag. The pawn compiler will now issue an error if a script passes a
parameter to the function that is not a 4× 4 array or that does not hold floating
point values.

Parameters checks that you may want to do at run-time, for the sake of security,
are the validity of addresses that you receive. For every reference parameter or
array, your native function calls amx_GetAddr to convert an address relative to
the abstract machine to a pointer usable by C/C++. As pawn does not allow
the script programmer to freely manipulate pointers, the addresses that a native
function receives are under normal circumstances always valid, but a modified
version of the pawn compiler (or perhaps bugs in the compiler and/or abstract
machine) may possibly be exploited to pass invalid addresses to a native function.

If security is important for your product, you should check the return value of
amx_GetAddr; the function returns AMX_ERR_MEMACCESS if the input pointer is in-
valid. When using the macro amx_StrParam, the pointer to the allocated memory
is set to NULL if the address of the input pointer is invalid.

Customizing the native function dispatcher

The above three steps to link native functions to the abstract machine imply that
you use the default native function dispatcher. The default dispatcher is flexible
and it has low overhead, but for specific purposes, you may create a custom native
function dispatcher.

64 � Customizing the native function dispatcher

First, a little background. The abstract machine is much like a CPU implemented
in software: it has an accumulator and a few other “registers”, including an
“instruction pointer” that points to the instruction that is executed next. When
a function in a pawn program calls some other function, the abstract machine sees
a “call” instruction, which adjust the instruction so that the next instruction
to be executed is the first instruction of the called function. So far, all is well.
However, a native function cannot be called using the same procedure, as the
native function is compiled for a real CPU and the abstract machine can only
handle its own instruction set. A native function is not invoked with a “call”
instruction, but with a “sysreq.c” instruction. Instead of adjusting the abstract
machine’s instruction pointer, a “sysreq.c” fires the native function dispatcher.
The “sysreq.c” instruction could be compared with a software-invoked interrupt
or trap.

It is the task of the native function dispatcher to find the correct native function,
to call the function, and to return the function result. The prototype for a native
function dispatcher is:

int amx_Callback(AMX *amx, cell index, cell *result, const cell *params);

where “index” is the unique identifier for the native function, “params” points to
an array with parameters that the dispatcher should pass to the native function,
and “result” is where the dispatcher should store the return value of the native
function. Assuming that the native function dispatcher has a way of finding the
appropriate native function from the index, the dispatcher can call the native
function with:

*result = native_func(amx, params);

The default native function dispatcher works in combination with amx_Register,
which looks up a function from the “native function table” in the header of the
compiled program file and stores the physical function address directly in that
table. With that done, the default dispatcher can simply use the index parameter
as an index in the native function table and retrieve the physical address of the
function. Several implementations of the default native function dispatcher go a
step further: after looking up the address of the native function, the dispatcher
changes the sysreq.c opcode into sysreq.d∗ and stores the function address
as the parameter to sysreq.d. The result is that every next call to the native
function will jump to the native function directly, without going through the
native function dispatcher again.

∗
Turn to appendix D for details on the opcodes.

Customizing the native function dispatcher � 65

This is a flexible scheme, as it allows you to inspect the compiled program and
load only those packages with native functions that the program actually uses. It
is also a scheme that imposes minimal overhead on calling native functions.

However, the standard operation of the tandem of amx_Register and the native
See appendix H
for ROM support

function dispatcher assumes that the native function table can be adjusted at
run-time. This is not the case when the script runs from ROM, for example. For
those situations, you have the option of hard-coding the mapping of “sysreq”
indices to native functions.

The first step to make is to adjust the declarations of native functions in the header
files. Taking the example of the “power” function module, the new declarations
become:

native power(value, exponent) = -1;

native sqroot(value) = -2;

The difference with the declarations on page 53 is that the power function is
now specifically set at “sysreq” −1 and sqroot is at “sysreq” −2. The use
of negative numbers is mandatory: the pawn compiler reserves positive numbers
for its default auto-numbering scheme (both schemes can be mixed). When an
explicit “sysreq” index is given for a native function, the pawn compiler omits it
from the native function table. That is, this scheme creates more compact binary
files.

The default native function dispatcher needs help to map negative indices to
function pointers; you need to create a table with the addresses of the native
functions and then compile the abstract machine with the name of this table in a
macro. In the table, the first entry is for index −1, the second for index −2, and
so forth:

AMX_NATIVE my_natives[] = {

n_power, /* -1 */

n_sqroot /* -2 */

};

The second step is to compile the abstract machine with the following macro
defined:

#define AMX_NATIVETABLE my_natives

You can usually define the macro on the compiler’s command line, for example
with a syntax like “-DAMX_NATIVETABLE=my_natives”.

If you need special functionality in the callback, an alternative is to replace the
native function dispatcher with a custom version. This consists of two steps:

66 � Customizing the native function dispatcher

creating the new native function dispatcher, and setting it. The latter is simply
a matter of calling:

amx_SetCallback(&amx, my_callback);

An example of a native function dispatcher follows below —this version is equiv-
alent to what you can do with the AMX_NATIVETABLE macro described above, by
the way.

int my_callback(AMX *amx, cell index, cell *result, const cell *params)

{

amx->error = AMX_ERR_NONE;

switch (index) {

case -1:

*result = n_power(amx, params);

break;

case -2:

*result = n_sqroot(amx, params);

break;

default:

assert(0);

} /* switch */

return amx->error;

}

67

Building the compiler
appendix a

The C sources of the compiler conform mostly to ANSI C, as the toolset is intended
to be widely portable. For purposes of distributing a multi-platform project file
with the source code, I have settled on “CMake”: a multi-platform tool for cre-
ating makefiles; see also appendix C. A CMake project file for the compiler is
included in the “compiler” sub-directory where the pawn source code is installed.
There is another CMake project file that builds the abstract machine in the “amx”
sub-directory.

If you cannot use CMake, you can create a “makefile” or a project for the sources
with ease. To get started, type in a terminal or DOS box a command like:

cl sc1.c sc2.c sc3.c sc4.c sc5.c sc6.c sc7.c scexpand.c sci18n.c (. . .)

(. . .) sclist.c scmemfil.c scstate.c scvars.c lstring.c

The “(. . .)” indicate a line continuation, by the way, you should not type these.
The command cl stands for the compile-&-link utility for your compiler. This is
indeed “cl” for Microsoft Visual C/C++, “bcc32” for Borland C++ and “gcc”
for GNU GCC. The above command builds the pawn compiler as a single ex-
ecutable, without a shared library/DLL. You can now customize the build by
adding compiler options. on the command line.

The source code contains sections of code that are conditionally compiled. See
your compiler manual how to specify options on the command line or in a “project”
to set these options. The compiler source code also contains assertions to help
me catch bugs while maintaining the code. To build the compiler without the
assertions, compile the compiler with the NDEBUG definition set.

The CMake project file build the compiler as a shared library plus a tiny console-
mode “driver” program that passes the command line options through to the
library. You can also build the compiler as a static library, or as a stand-alone ex-
ecutable (as was explained in the preceding paragraphs). See page 70 for creating
a static library.

When compiling the sources under Linux, you may need to first translate the
CR/LF line endings to LF line endings —there are two source code archives
for pawn: the ZIP file has DOS/Windows-style line endings (CR/LF) and the
TAR-GZIP file has Unix-style line endings (LF). Some tools (e.g. some versions
of the GCC compiler) are sensitive to the way that lines are ended. The utility
“dos2unix” is the most convenient way to translate source files.

68 � Building the compiler

Note that the compiler uses an include file from the “amx” subdirectory too, so
its probably best to run dos2unix over all source files in all subdirectories.

• Compile-time options

The compiler is a stand-alone program. If you want to link it to an application,
can compile the sources with the macro definition NO_MAIN. This will strip the
“main” function and a set of I/O functions from the program. See the section
“Embedding the compiler into an application” (below) for details.

If you want a pawn compiler that outputs 16-bit P-code, add the definition
“PAWN_CELL_SIZE=16” to the compiler options. Note that this is unrelated to
whether the compiler itself is a 16-bit or a 32-bit executable program. The header
file uses precise types for a compiler that conforms to the C99 standard, but for
older (i.e. “most”) compilers it boldly assumes that a “short int” is 16-bits and
a “long int” is 32-bits. If this is not true for your compiler, you must change the
definition of the cell type in SC.H, but you must also check the locations where
sections that are conditionally compiled on the value of PAWN_CELL_SIZE appear.
N.B. The pawn tools are not regularly tested with 16-bit cells.

The basic code generation is followed by a simple peephole optimizer. If you
stumble on a code generation bug, one of the first things that you may want to
find out is whether this bug is in the code generation or in the optimizer. To
do so, use the option -d3 of the pawn compiler (this replaces the NO_OPTIMIZE

macro in previous releases to “conditionally compile” the peephole optimizer).

To save data space (which is important for the 16-bit version of the compiler,
where data and stack must fit in one 64 kiB segment), two tables of strings are
compressed; these tables are in SC5.SCP and SC7.SCP. If you change those strings
(or add to them), the strings should be recompressed with the utility SCPACK.
Before that, you have to build SCPACK itself —this is a simple ANSI C program
with no dependencies on other files.

The pawn compiler includes a preprocessor that does text substitutions (with or
without parameters). The text matching capabilities of the pawn preprocessor are
even more flexible than that of the C/C++ preprocessor, and, as a consequence, it
is also at least as “dangerous” in obfuscating code. You may decide not to include
the preprocessor (and the #define keyword) by setting the compile-time option
NO_DEFINE.

The pawn compiler reads source files in the ascii character set and in the UTF-
8 character set. Support for UTF-8 can be disabled by defining the macro

Building the compiler � 69

PAWN_NO_UTF8. The UTF-8 decoder in pawn supports the full 31-bit UCS-4
character set.

A few functions of the pawn compiler are non-essential gadgets. In cases where
the size of the compiler counts, these can be removed by compiling with the
PAWN_LIGHT macro defined. With this macro defined, the compiler will miss:

⋄ the usage report (cross-reference); i.e. the “-r” option,

⋄ The stack/heap usage estimate, with the “-d2” and “-d3” options,

⋄ the ability to parse response files; the “@filename” command line option is
ignored,

⋄ support for a pawn.cfg file, whose options are implicitly read.

⋄ generation of macro instructions and packed opcodes (i.e. the “-O2” option is
disabled).

• Summary of definitions

AMX COMPACTMARGIN The size of the buffer needed for the “compact encoded”
file format. See page 105 for details on compact encoding.
The default value is 64 (cells). When this value is set to
zero, support for compact encoding is removed altogether
from the abstract machine. When support for compact
encoding is desired, it is advised to set this value to at
least 30.

AMX NO MACRO INSTR Removes the ability to generate macro instructions from
the pawn compiler. Macro instructions are incompatible
with a JIT.

AMX NO PACKED OPC Removes the ability to generate packed opcodes from the
pawn compiler. Packed opcodes are incompatible with a
JIT.

NDEBUG Compile without assertions.

NO MAIN Remove main() and I/O functions from the program.

NO DEFINE Remove the text preprocessor from the pawn compiler (i.e.
the #define directive).

PAWN CELL SIZE The size of a cell in bits, either 16, 32 or 64.

PAWN LIGHT Remove support for cross-reference output and response
files. Some optimizations are also disabled. This code
implies AMX_NO_MACRO_INSTR and AMX_NO_PACKED_OPC.

PAWN NO CODEPAGE Remove codepage support from the pawn compiler.

PAWN NO UTF8 Remove the UTF-8 reading capability.

70 � Building the compiler

• Embedding the compiler into an application

When you want to link the pawn compiler into an application, you will have to
strip the “main” function from it (see the NO_MAIN option above). But that is just
a first step. In addition, you should:

⋄ Attend to the pollution of the global namespace by the many, many functions
and global variables of the pawn compiler.

⋄ Overrule the functions that the pawn compiler calls for input/output.

The archive contains the file libpawnc.c which illustrates how to perform these
steps. Basically, you implement all file I/O functions that the pawn compiler
requires. These functions do not have to read from file or write to file, you can
compile from memory into memory, provided that you implement the functions
that do this.

Then, from your application, call pc_compile, passing in all arguments. The
prototype of the function is:

int pc_compile(int argc,char **argv)

As you can see, this function looks like the standard function main; when calling
pc_compile, you must fill in an array of arguments, including argv[0] (because
the compiler constructs the path for the include files from the path/filename in
argv[0]).

Other functions that you can call from the application (before calling pc_compile)
are pc_addconstant and pc_addtag. Function pc_compile removes all sym-
bols before returning, including all constants and tagnames that you added with
pc_addconstant and pc_addtag.

The libpawnc.c file can also serve as the basis for a DLL or a shared library. As
is, it can be used as a DLL/shared library for console applications —the pc_error
function displays the error messages onto the console. Alternatively, you may add
the “-e” option to the argument list of pc_compile to redirect all output to a file
and use the libpawnc library without change in GUI applications.

Compiling libpawnc to a “shared library” (Linux, UNIX) is not much different
than the compiling to a DLL, but you will probably want to reduce the symbols
in the resulting library after the link step. The compiler sources export many
functions that are only for internal use. The “strip” command allows you to strip
all symbols from a library (shared or static), excluding a selected few (pc_compile,
etc.). For a DLL, this step is unnecessary, because a DLL exports only symbols
that were explicitly exported via a .DEF file.

Building the compiler � 71

Note that the exported functions in libpawnc assume the default calling con-
vention for the compiler. With many compilers, this is __cdecl. For a DLL, it
is common to use __stdcall. You may be able to change the compiler’s default
calling convention with a (command line) option. However, some of the functions
in the pawn compiler use variable length argument lists, and your compiler may
not provide support for variable length argument lists in the __stdcall calling
convention.∗

The DLL version of libpawnc can be driven from rundll/rundll32. The
command line to use, for a 32-bit version, is:

rundll32 libpawnc.dll,Compile options hello.p

Among the recommended options are “-D” (set active directory for output and
error files, “-i” (set the include path) and “-e” (send error messages to a file).

∗
It is widely believed that the stdcall calling convention does not allow variable length argument

lists, but my reading of the specification suggests otherwise and I have successfully built stdcall

functions that use variable length argument lists.

72

Building the Abstract Machine
appendix b

Project files to build the example “pawnrun” console run-time are available for
Microsoft Visual C/C++ (in the “msvc” subdirectory) and for CMake. See the
appendices A and C. for details. Mostly, though, you will want to embed the
abstract machine in an application, instead of using a separate run-time. So the
provided project and makefile are of limited use.

The library for the “Abstract Machine” (amx) is fully implemented in a single C
file: AMX.C. This file contains the source code of all functions, but without any
native function. The key routine in the library, amx_Exec, is called the amx core
function, and it exists in various versions:

⋄ ANSI C: the slowest but most portable core;

⋄ GNU GCC optimized: still implemented in C, but using specific GNU GCC
extensions that make it significantly faster than the ANSI C version;

⋄ Intel Pentium assembler: this is a single design, but doubly implemented to
support a wide range of assemblers;

⋄ ARM assembler (for architecture version 4 and up): this, too, is a single design,
but doubly implemented to support the two most popular ARM assemblers;

⋄ Just-In-Time compilers: the fastest core (but the least portable, and currently
only available for the Intel Pentium platform).

Next to the basic amx library, the toolkit comes with various extension modules
(native function libraries) that add console input/output, fixed point and floating
point arithmetic, and helper routines to support the language. These extension
modules are technically not part of the “Abstract Machine”.

The C sources contain sections of code that are conditionally compiled. See your
compiler manual how to specify options on the command line or in a “project” to
set these options.

The source code of the amx contains assertions to help me catch bugs while
maintaining the code. In the retail version of the amx, you will want to compile
without assertions, because this code slows down its operation. To do so, compile
the source files with the NDEBUG definition set.

The basic amx library routines do not use or depend on dynamic memory allo-
cation, file I/O or console I/O, but native functions may do so. For instance, the
“property” functions in the AMXCORE.C extension module use malloc/free; you

Building the Abstract Machine � 73

can remove these property set/retrieval functions by compiling the AMXCORE.C file
with the definition AMX_NOPROPLIST.

The console I/O functions in AMXCONS.C (another extension module) use standard
C to a large extent. For a few extended functions, the file has explicit support for
ANSI and VT100 terminal codes (ANSI.SYS under DOS, xterm and most shells
under Linux), and for Win32 console programs. The AMXCONS.C file provides
“hook” functions that your host application can implement to perform console
output. By default, AMXCONS.C uses Win32 console functions when compiled for
Microsoft Windows and ANSI/VT100 terminal codes when compiled for Linux
or Unix. If, on a Windows system, you prefer to use ANSI/VT100 terminal
codes, compile with the macro VT100; if you wish to use your own “console I/O”
functions, define AMX_TERMINAL instead —see the section “Adding a terminal to
the abstract machine” on page 83 for examples.

Depending on the capabilities of the host application and the operating system,
you may want to enable Unicode or “wide character” support for the scripting
subsystem. The pawn compiler is flexible in its handling of codepages and trans-
lation of extended ascii and UTF-8 to wide characters (i.e., Unicode). For the
host application, there are essentially two approaches:

See also page
83 for terminals
supporting Uni-
code or UTF-8

1 Support Unicode or UCS-4 and interpret unpacked strings as strings holding
“wide” characters. The pawn compiler does not generate Unicode surrogate
pairs. If characters outside the BMP (“Basic Multilingual Plane”) are needed
and the host application (or operating system) does not support the full UCS-
4 encoding, the host application must split the 32-bit character cell provided
by the pawn compiler into a surrogate pair.

2 Support UTF-8 encoding and parse strings in the host application, or, if the
operating system supports UTF-8 natively, pass the strings through to the
higher level without further processing.

The core modules of the abstract machine are independent of whether the host
application uses Unicode or UTF-8; the core modules of the abstract machine
have wide character support built-in by default. Several auxiliary modules —
for instance AMXCONS.C (console I/O support), need to be compiled with the
UNICODE or _UNICODE macros defined to enable Unicode support. Both macros
have the same effect. If you wish to remove Unicode/wide-character support, add
the definition AMX_ANSIONLY to the compiler options. This option also removes
UTF-8 support.

Calling conventions are always an important issue in porting software. The pawn
amx specifies the calling convention it uses via three macros. These macros are

74 � Building the Abstract Machine

blank by default, in order to stay as close to ANSI C as possible. By (re-)defining
either (or both) of these macros, you can adjust the calling conventions:

AMX NATIVE CALL The calling convention for the native functions. You may
want to set this to __stdcall when compiling for Win32.

AMXAPI The calling convention used for all interface functions of
the Abstract Machine (e.g. amx_Init), including the na-
tive function dispatcher and the the debugger callback.
You need to change this if you put the amx in a Windows
DLL, for example.

AMXEXPORT When you create dynamically loadable extension modules,
the initialization and clean-up functions must be “visi-
ble” from the outside. For a Unix/Linux shared library,
any non-static function is automatically accessible, but
for Microsoft Windows, a function must be explicitly ex-
ported. In addition, it is advised that exported func-
tions use the __stdcall calling convention (i.e., set AMXAPI
to __stdcall). See page 85 for details. A typical set-
ting for AMXEXPORT under Microsoft Windows is __de-

clspec(dllexport).

If you intend to use the assembler core of the amx, there are two more calling
conventions to address.

As you may observe, the “calling convention” issue is a distinctive complexity of
Microsoft Windows. In Unix-like operating systems, you can usually ignore the
issue of calling conventions.

The default threading method for the implementations for GNU C/C++, Intel
C/C++ and the assembler implementations is “token threading”. If you disable
the support for packed opcodes (option AMX_NO_PACKED_OPC), the default switches
to “direct threading”, because it is faster. You can force “token threading” with
the option AMX_TOKENTHREADING. Token threading has more decoding overhead
(one memory access per P-code instruction), but direct threading requires patch-
ing opcodes in the P-code stream and token threading does not. Token threading
is therefore a requirement when the compiled script runs from ROM, or when
“packed opcodes” are in effect. The ANSI C version only supports “switch thread-
ing”.

• Summary of definitions

Building the Abstract Machine � 75

AMX ANSIONLY Remove Unicode and UTF-8 support from the abstract
machine.

AMX COMPACTMARGIN The size of the buffer needed for the “compact encoded”
file format. See page 105 for details on compact encoding.
The default value is 64 (cells). When this value is set to
zero, support for compact encoding is removed altogether
from the abstract machine. When support for compact
encoding is desired, it is advised to set this value to at
least 30.

AMX LIBPATH The name of the environment variable to use for locating
dynamically loaded extension modules (see page 61). This
environment variable only applies to Linux and UNIX. Its
default value is “AMXLIB” —see page 6.

AMX NATIVE CALL Calling convention of native functions (applies to AMX.C

and to extension modules).

AMX NATIVETABLE Add a native table with “fixed” functions, see page 65.

AMX NODYNALOAD Disable support for dynamically loadable extension mod-
ules, see the discussion at page 61 (AMX.C).

AMX NO MACRO INSTR Disable support for macro instructions —this flag is im-
plied when the JIT flag is set, as macro instructions are
not supported by the JIT compilers.

AMX NO PACKED OPC Disable support for packed opcodes.

AMX NOPROPLIST Remove the get/set property functions from AMXCORE.C.

AMX NORANDOM Remove the pseudo-random number generator from AMX-

CORE.C —presumably for replacing it by a better pseudo-
random number generator.

AMX TERMINAL For AMXCONS.C, do not use console functions (Win32 con-
sole, ANSI/VT100 or plain console).

AMX TOKENTHREADING Use “token threading” (only valid for the GNU C/C++,
Intel C/C++ implementations, and the assembler imple-
mentations). Token threading is implied when packed op-
codes are supported, and packed opcodes are supported
by default. If you wish to use direct threading (which
is faster), you must disable packed opcodes (see option
AMX_NO_PACKED_OPC).

AMXAPI Calling convention of interface functions; this overrides any
CDECL or STDECL macros (AMX.C).

76 � Building the Abstract Machine

AMXEXPORT The “exported” attribute for initialization and clean-up
functions of extension modules, when those extension mod-
ules are in a DLL.

ASM32 Compile the assembler version (AMX.C).

CDECL Sets AMXAPI to __cdecl, for compatibility with the assem-
bler core (AMX.C).

FIXEDPOINT For AMXCONS.C, add fixed point support, see also FLOAT-

POINT option.

FLOATPOINT For AMXCONS.C, add floating point support, see the sepa-
rate section below.

JIT Add support for the Just-In-Time compiler (AMX.C).

NDEBUG Compile without assertions (all files).

STDECL Sets AMXAPI to __stdcall, for compatibility with the as-
sembler core (AMX.C).

UNICODE, UNICODE

Enable Unicode in the console I/O module and possibly
other auxiliary libraries.

VT100 For AMXCONS.C, use ANSI/VT100 terminal codes (implicit
for Linux).

All compiling examples (listed below) have as few command line options as needed.
Consult the compiler documentation to add debugging information or to enable
optimizations. The program that each of the examples compile is SRUN, a simple
P-code interpretor that is developed starting at page 6.

As an aside, “project” and “workspace” files for Microsoft Visual C/C++, (for
the compiler and the Abstract Machine library source files) can be found in the
“msvc” subdirectory of where pawn is installed.

• ANSI/GNU C

Borland C++ version 3.1, 16-bit
bcc pawnrun.c amx.c amxcore.c amxcons.c

The 16-bit compiler in the Borland C++ 5.0 package appears to have a
few code generator errors, so either use an earlier version of the Borland
compiler, or compile in 32-bit.

LCC-Win32, 32-bit
lc pawnrun.c amx.c amxcons.c amxcore.c

Building the Abstract Machine � 77

Microsoft Visual C/C++ version 5.0 or 6.0, 32-bit
cl pawnrun.c amx.c amxcons.c amxcore.c

When running with warning level 4, option “-W4”, Visual C/C++ issues
a few warnings for unused function arguments.

Watcom C/C++ version 11.0, 32-bit
wcl386 /l=nt pawnrun.c amx.c amxcore.c amxcons.c

GNU GCC for Linux, FreeBSD and OpenBSD
gcc -o pawnrun -I../linux pawnrun.c amx.c amxcore.c (. . .)

(. . .) amxcons.c ../linux/getch.c -ldl

The AMX.C file has special code for the GNU C compiler (GCC), which
makes the Abstract Machine about twice as fast as the ANSI C version.
You must add an extra file for building on Unix-like operating systems.
The console I/O functionality in amxcons.c relies on a function that
reads keys in raw mode without echo; this is standard on DOS and Win-
dows platforms, but must be implemented explicitly in Linux —getch.c.
The abstract machine also supports dynamically loaded extension mod-
ules by default (see page 85). Dynamic linking requires the inclusion of
the library libdl.

GNU GCC plus ncurses (for Linux, FreeBSD and OpenBSD)
gcc -o pawnrun -I../linux -DUSE CURSES pawnrun.c amx.c amxcore.c (. . .)

(. . .) amxcons.c -ldl -lcurses

This second example uses the “ncurses” library for terminal support,
instead of the standard (limited) vt100 terminal support. The ncurses
library also replaces the special file “getch.c”.

The above list is far from comprehensive. The pawn Abstract Machine is portable
across many compilers and many operating systems/architectures.

• Assembler core for the Abstract Machine

Marc Peter’s assembler implementation of the Abstract Machine currently runs
with all 32-bit C compilers for Microsoft Windows. It is (approximately) five
times faster than the ANSI C version. As you can see on the command line, the
C files need the ASM32 macro to be defined. The assembler kernels by Marc Peter
are for the Intel Pentium platform. Recently, assembler kernels for the ARM
processors (architecture version 4) have been added.

78 � Building the Abstract Machine

There are two “calling convention” issues in the assembler implementation (in
addition to those mentioned at page 73):
⋄ The convention with which amx_exec_asm itself is called. The default calling

convention is Watcom’s register calling convention. For other compilers, change
this to __cdecl by setting the macro STACKARGS.

⋄ The convention for calling the “hook” functions (the native function dispatcher
and the debugger callback). Again, the default is Watcom’s register calling
convention. Use the macros CDECL or STDECL for __cdecl and __stdcall

respectively. (Since STDCALL is a reserved word on the assembler, I had to
choose a different name for the macro, hence STDECL.)
In AMX.C, the calling convention for the hook functions is set with the AMXAPI

macro. You may need to adjust the AMXAPI macro so that it does not con-
flict with the calling convention for the hook functions that the assembler core
assumes.

Included in the archive are two pre-assembled object files, for those of you who
do not have an assembler (note that Microsoft’s masm is now freely available
from Microsoft’s WEB site, and that the free “Netwide assembler” is now also
supported). The two assembler files differ only in the calling convention used.
Below are the filenames and the commands that I used to assemble them:
AMXEXECC.OBJ (cdecl calling convention)

ml /c /DCDECL /DSTACKARGS /Cx /coff /Foamxexecc amxexec.asm

AMXEXECS.OBJ (stdcall calling convention)
ml /c /DSTDECL /DSTACKARGS /Cx /coff /Foamxexecs amxexec.asm

The two pre-compiled assembler files were both build from the file AMXEXEC.ASM

(but with different options). This assembler file is compatible with Microsoft
masm, Borland tasm and Watcom wasm. The Netwide assembler (nasm) has a
syntax that is similar to that of masm/tasm/wasm, but is incompatible with it.
The file “AMXEXECN.ASM” (note the “N” after “AMXEXEC”) is the same implementa-
tion of the assembler core for the amx, but using the “Netwide assembler” syntax.
The Netwide assembler is a free assembler that runs on a variety of platforms.

The Netwide assembler version of the amx code does not support Watcom’s “reg-
ister calling” convention —it always uses the __cdecl for the amx_exec_asm func-
tion itself. The calling convention for the “hook” functions is __cdecl by default,
but this can be changed to __stdcall by setting the STDECL macro at the nasm
command line.

There are two versions for the ARM processor, matching two common assemblers
for the platform: the assembler from ARM Ltd. itself and the GNU assembler.

Building the Abstract Machine � 79

Both implementations are for architecture version 4 (ARM7) and implemented in
“ARM” mode (kernels using “Thumb” mode are not yet availale).

I have had troubles with the incremental linker when mixing assembler with
C/C++, for both Borland and Microsoft compilers. When the program fails for
mysterious reasons, or when the debugger shows assembler code or variable ad-
dresses that clearly do not match the associated source code, first do a full build
(and especially a full “link”).

Borland C++ version 5.02 & TASM, 32-bit
bcc32 -DASM32 -TdCDECL -TdSTACKARGS pawnrun.c amx.c amxcore.c (. . .)

(. . .) amxcons.c amxexec.asm

You must assemble AMXEXEC.ASM with the “CDECL” and “STACKARGS”
options. The “-T” compiler option passes what follows onto TASM32.

Borland C++ version 5.02 & NASM, 32-bit
nasmw -O1 -fobj -dBORLAND amxexecn.asm

bcc32 -DASM32 pawnrun.c amx.c amxcore.c amxcons.c amxexecn.obj

You must assemble AMXEXECN.ASM with the “BORLAND” option, because
Borland C++ uses different segment declarations as other compilers.

GNU GCC for Linux, FreeBSD and OpenBSD
nasm -O1 -f elf amxexecn.asm

gcc -o pawnrun -DASM32 -I../linux pawnrun.c amx.c amxcore.c (. . .)

(. . .) amxcons.c ../linux/getch.c amxexecn.o -ldl

Most Linux distributions use the “elf” file format. See page 77 for the
extra file getch.c and page 85 for the option -ldl which causes the
inclusion of the library libdl

LCC-Win32 & MASM, 32-bit
ml /c /DCDECL /DSTACKARGS /Cx /coff amxexec.asm

lc -DASM32 pawnrun.c amx.c amxcons.c amxcore.c amxexec.obj

LCC-Win32 does not come with an assembler, I have used MASM here.
I have only done preliminary testing with LCC-Win32.

Microsoft Visual C/C++ version 5.0 or 6.0, 32-bit, cdecl
ml /c /DCDECL /DSTACKARGS /Cx /coff amxexec.asm

cl -Gd -DASM32 pawnrun.c amx.c amxcons.c amxcore.c amxexec.obj

Microsoft appears to use __cdecl calling convention by default, but I
have forced the calling convention to be sure: option -Gd.

80 � Building the Abstract Machine

Microsoft Visual C/C++ version 5.0 or 6.0, 32-bit, stdcall
ml /c /DSTDECL /DSTACKARGS /Cx /coff amxexec.asm

cl -Gz -DASM32 -DAMXAPI= stdcall pawnrun.c amx.c amxcons.c (. . .)

(. . .) amxcore.c amxexec.obj

Option -Gz forces __stdcall calling convention. The assembler file now
uses STDECL (for __stdcall) too.

Watcom C/C++ version 11.0 & WASM, 32-bit
wcl386 /l=nt /dASM32 pawnrun.c amx.c amxcore.c amxcons.c amxexec.asm

Watcom C/C++ uses register calling convention, which is fastest in this
case.

• Just-In-Time compiler

The third option is to add the Just-In-Time compiler, plus support routines. The
JIT compiles the P-code of the AMX to native machine code at run-time. The
resulting code is more than twice as fast as the assembler version of the Abstract
Machine (which was pretty fast already). To add support for the JIT, you must
define the macro “JIT” via a command line switch.

In addition to compiling with the JIT macro defined, the host application must:
⋄ set AMX_FLAG_JITC in the “flags” field of the AMX structure before calling

function amx_Init;
⋄ call amx_InitJIT function after amx_Init.

The function amx_InitJIT, in turn, needs two extra memory blocks: one for the
native machine instructions that the compiler generates and the other for any
relocations. After amx_InitJIT returns, the relocation table buffer may be freed.
The memory block holding the original pawn P-code instructions is no longer
needed and may also be freed.

Special care must be taken for the block that will contain the native machine code
instructions: the permission to execute machine code from the memory block must
be set for the block. On Intel processors, any block of memory that has “read
access” implicitly has “execution access”. To block the treat of buffer overruns
that allow the execution of arbitrary code, AMD has introduced the “no execute”
(NX) bit in the descriptor of a memory page, and Intel has adopted this design —
though calling it “execution denied” (XD). On an operating system that has the
NX/XD bit set by default, you must then make sure that the memory block into
which the JIT-compiler generates the instructions has the NX/XD bit cleared.

Building the Abstract Machine � 81

The JIT-compiler itself needs only read-write access to the memory block for
the native machine instructions (this is the default for a memory block that you
allocate). The execution of the JIT-compiled code, through amx_Exec, requires
full access to the memory block: read, write and execute. The block needs write
access, because the SYSREQ.C opcode is patched to SYSREQ.D after the first lookup
(this is an optimization, look up the address of the native function only once).
On Microsoft Windows, function VirtualAlloc can allocate a block of memory
with full access; alternatively VirtualProtect may change the access rights on
an existing memory block. On versions of Linux that support the NX/XD bits,
you can use vmalloc_exec to get a block with full access, or adjust the access
rights on an already allocated block with function mprotect. If your version of
Linux does not provide vmalloc_exec, it will probably not support the NX/XD
bit. For processors or operating systems that do not support the NX/XD bit,
execution of code is implicitly allowed. You can use the standard malloc in place
of VirtualAlloc and vmalloc_exec.

During compilation, the JIT compiler requires write-access to its own code seg-
ment: the JIT-compiler patches P-code parameters into its own code segment
during compilation. To make these patches possible, amx_InitJIT temporarily
enables “write-access” it is own code segment, for operating systems that require
this.

amx_Init gives a conservative estimate of the size of the memory block that is
needed to compile the native machine code into. Conservative estimate means
here that the memory block is guaranteed to be big enough, and will likely be far
bigger than what is really needed. When amx_InitJIT returns, it has calculated
the real required memory size. To save memory, you may therefore want to shrink
or re-allocate the memory block after amx_InitJIT returns.

The toolkit comes with the source code of prun_jit.c which is a modification of
the “pawnrun” program (the example program for the embedding of the abstract
machine, see page 6) for the JIT-compiler. This example program lays out the
steps described above.

There are, in fact, three versions of the JIT, all of which are for the 80x86 processor
architecture (Intel Pentium, AMD Athlon):

AMXJITR.ASM uses register based calling conventions and requires Watcom
C/C++;

AMXJITS.ASM uses __cdecl or __stdcall calling conventions (both are stack
based) and should work with other Win32 compilers.

82 � Building the Abstract Machine

AMXJITSN.ASM is the same as AMXJITS.ASM, but implemented in “nasm” and
thereby making the JIT-compiler available to Linux and Unix-
like operating systems.

Apart from the calling conventions and the assembler syntax, the three JIT ver-
sions are identical.

The source files AMXJITR.ASM, AMXJITS.ASM and AMXJITSN.ASM contain several
definitions with which you can trade performance for other options. See the source
files for a description of these definitions.

Borland C++ version 5.02, 32-bit
bcc32 -DJIT -Tm2 prun jit.c amx.c amxcore.c amxcons.c amxjits.asm

You must force TASM to use at two passes, so that forward references
are resolved. The -Tm2 option accomplishes this.

Watcom C/C++ version 11.0, 32-bit
wcl386 /l=nt /dJIT prun jit.c amx.c amxcore.c amxcons.c amxjitr.asm

Watcom C/C++ uses register calling convention, which is fastest in this
case.

GNU GCC for Linux, FreeBSD and OpenBSD
nasm -O1 -f elf amxjitsn.asm

gcc -o pawnrun -DJIT -I../linux prun jit.c amx.c amxcore.c (. . .)

(. . .) amxcons.c ../linux/getch.c amxjitsn.o -ldl

Most Linux distributions use the “elf” file format. The -O1 option ad-
justs the correct jump sizes (short/near) automatically. See page 77 for
the extra file getch.c and page 85 for the option -ldl which causes the
inclusion of the library libdl.

The JIT does not support the debugger hook. That is, the JIT compiles the P-
code into native machine code for the processor, but it skips the break opcode
completely. When running the native machine code, the debugger hook function
will therefore never be invoked. If you wish to have a solution where the script
code can run at maximum speed, and at the same time be able to debug the
script, one option is to include both the assembler core (see page 77) and the JIT
in the abstract machine. In this case, the compiler command line would specify
both the JIT and ASM32 macros, and both the assembler files for a JIT and an
assembler core are added to the project.

Building the Abstract Machine � 83

With a combined JIT & assembler core, you can debug the script by running on
the assembler core and run the retail code on the JIT. The host application can
decide what “core” to run the script on before calling amx_Init.

• Adding a terminal to the abstract machine

A simple text terminal is often convenient for users of a product, as it lets them
print out text strings and get input in a plain and simple way. The strings printed
on the console can also serve as a debugging or tracing aid for the user.

Example console functions are in the file AMXCONS.C, these allow for printing
formatted text and reading keyboard input. The default implementation of the
console interface writes to the standard output console for a “text mode” appli-
cation: this is a “DOS box” for Microsoft Windows and the active terminal for
Linux/Unix. On Linux/Unix, the functions support the VT100 terminal, and
on Microsoft Windows the equivalent functionality is emulated. There is a fall-
back using only the functions of standard C —this imposes several limitations, of
course, but it works everywhere.

For better embedding in an application, you may want to write a custom terminal.
As an example how to write the support code, the pawn toolkit comes with two
alternative terminal implementations:

termwin A terminal for Microsoft Windows GUI (“windowed”) applications. It
may be compiled to use either ASCII/ANSI console I/O or Unicode.
Although the number of columns and lines is fixed, the terminal window
can be resized and scrolled, and the terminal allows the font to be scaled
as well. This implementation supports multiple concurrent terminals.

term ga A terminal implemented in the cross-platform “GraphApp” library; it
runs on Microsoft Windows, Linux, FreeBSD and the Macintosh. This
terminal supports UTF-8 natively, and it may be compiled with Uni-
code (“wide character”) support as well.

To compile with a special terminal, the default implementation of terminal I/O
functions in AMXCONS.C must be disabled, and a source file with the desired ter-
minal must be added to the project. With Watcom C/C++ for the example, the
command line for using termwin would be:

wcl386 /dAMX TERMINAL /l=nt pawnrun.c amx.c amxcore.c amxcons.c termwin.c

If you compile the Microsoft Windows terminal for Unicode, you need to add the
definition of the macro “UNICODE” on the command line. When you want the

84 � Building the Abstract Machine

Unicode terminal to run as well in Microsoft Windows 9x, you will need to link
against the “unicows” library (the “Microsoft Layer for Unicode” on Windows
95/98/ME). See the Microsoft site for details on Unicode and unicows.

Using the “GraphApp” terminal involves only slightly more work: GraphApp
requires a redefinition of the entry point of the program (function main). The
easiest way to get it running is to include the file “grahpapp.h” in pawnrun.c.
Of course, the GraphApp libraries must be compiled as well.

• Support for floating point in the Abstract Machine

The definitions for user defined operators for the floating point routines are in the
file “FLOAT.INC”. You can use floating point arithmetic in your pawn programs
by including this file. The include file gives definitions for native functions that
perform the basic floating point operations and user-defined operators to map
those to the common add/subtract/multiply/divide operators. See the pawn
booklet “The Language” for more information on user-defined operators.

The abstract machine needs to support floating point operations as well. This
requires two or three additions to the compilation of the abstract machine:

1. you must define the macro “FLOATPOINT” when compiling the source files;

2. you should add the file FLOAT.C to the list of files

3. depending on the C compiler/linker, you may need to add a compiler option or
a library file for the linker.

These two/three steps apply to all “compiler command lines” given above. For
example, the first command line (ANSI C, using the 16-bit Borland C++ compiler)
becomes:

bcc -DFLOATPOINT pawnrun.c amx.c amxcore.c amxcons.c float.c

The original line read: bcc pawnrun.c amx.c amxcore.c amxcons.c

The Borland C++ compiler requires no extra option to compile floating point
programs. The GNU GCC compiler, however, must be instructed to add the
“math” library to the linking phase, with the option -lm. The command line for
GCC for Linux becomes:

gcc -o pawnrun -DFLOATPOINT -I../linux pawnrun.c amx.c (. . .)

(. . .) amxcore.c amxcons.c float.c -lm

Fixed point support, by the way, is added in nearly the same way: you add the
macro FIXEDPOINT on the compiler command line and you include the file FIXED.C

Building the Abstract Machine � 85

on the file list. In your pawn program, you must include the file FIXED.INC for
the definitions and user defined operators.

• Compiling “dynamically loadable” modules

The above section on adding floating point to the abstract machine did so by
compiling/linking the support statically into the run-time. An alternative is to
compile the abstract machine with only a minimal set of extension modules and
native functions, and to create additional libraries as dynamically loadable mod-
ules (or “plug-ins”).

To create a dynamically loadable extension module, the C/C++ file that imple-
ments the module must be built as a DLL (Microsoft Windows) or a shared library
(Unix/Linux).

In Microsoft Windows, the amx_FilenameInit and amx_FilenameCleanup func-
tions must be marked as “exported”. For that purpose, AMX.H defines the macro
AMXEXPORT: it is suggested that the definitions of amx_FilenameInit and amx_FilenameCleanup
are marked with this macro and that you set it to the appropriate (compiler-
dependent) calling convention on the compiler command line. Exported functions
in Microsoft Windows should also have the “__stdcall” calling convention, see
below.

The exported function names should furthermore not be “mangled”. In a C++

project the files should be declared extern "C" to avoid name mangling. Com-
pilers for Microsoft Windows routinely mangle C functions as well (for example
amx_PowerInit becomes amx_PowerInit@4), and this must then be explicitly dis-
abled through a linker “.DEF” file or a compiler option. Watcom C/C++ uses an
“.LBC” file instead of a .DEF file.

A complication in Microsoft Windows, next to name mangling, is the calling con-
vention. It is common for Dynamic Link Libraries that the exported functions use
the “__stdcall” calling convention. Technically, the native functions do not have
to use the same calling convention as the exported functions (amx_FilenameInit
and amx_FilenameCleanup), but for reasons of similarity and interoperability, I
advise that you also set the calling convention of native functions and of the
“hook” functions to __stdcall. This, in turn, means that the abstract ma-
chine code must also be built with the __stdcall calling convention for native
functions and hook functions (set both macros AMX_NATIVE_CALL and AMXAPI to
__stdcall). Refer to page 73 for details.

86 � Building the Abstract Machine

An example command line to create the “floating point arithmetic” extension
See also page
61 for the file-
name convention
of dynamically
loadable exten-
sion modules

module as a DLL for Microsoft Windows, using Borland C++ 5.0 is:
bcc32 -tWD -eamxFloat -DAMXEXPORT=" export" (. . .)

(. . .) -DAMX NATIVE CALL= stdcall -DAMXAPI= stdcall float.c amx.c float.rc

Note that the host program should now also use the __stdcall calling convention
for native functions and for the hook functions. The console I/O extension module
(AMXCONS.C) also contains some support for fixed point and floating point values,
which must be separately enabled —see the preceding section.

A native function library that is created as a DLL/shared library needs to link
to a few functions in the file AMX.C —notably amx_Register. It is, however, a
waste of space to include all the functions in AMX.C into the module: it is unlikely
that the module will call amx_Init or amx_Exec, for example. To strip unneeded
functionality from AMX.C, define macros on the compiler command line to specify
the set of functions that you do want:
AMX ALIGN for amx_Align16, amx_Align32 and amx_Align64

AMX ALLOT for amx_Allot and amx_Release

AMX CLEANUP for amx_Cleanup
AMX CLONE for amx_Clone
AMX EXEC for amx_Exec plus the amx_PushXXX functions
AMX FLAGS for amx_Flags
AMX GETADDR for amx_GetAddr
AMX INIT for amx_Init and amx_InitJIT

AMX MEMINFO for amx_MemInfo
AMX NAMELENGTH for amx_NameLength
AMX NATIVEINFO for amx_NativeInfo
AMX RAISEERROR for amx_RaiseError
AMX REGISTER for amx_Register
AMX SETCALLBACK for amx_SetCallback
AMX SETDEBUGHOOK for amx_SetDebugHook
AMX UTF8XXX for amx_UTF8Get, amx_UTF8Put and amx_UTF8Check

AMX XXXNATIVES for amx_NumNatives, amx_GetNative and amx_FindNative

AMX XXXPUBLICS for amx_NumPublics, amx_GetPublic and amx_FindPublic

AMX XXXPUBVARS for amx_NumPubVars, amx_GetPubVar and amx_FindPubVar

AMX XXXSTRING for amx_StrLength, amx_GetString and amx_SetString

AMX XXXTAGS for amx_NumTags, amx_GetTag and amx_FindTagId

AMX XXXUSERDATA for amx_GetUserData and amx_SetUserData

87

Using CMake
appendix c

CMake is a cross-platform, open-source make system, which generates “make-
file’s” or project files for diverse compilers and platforms. It runs natively on
Linux, various Unix variants and Windows (without requiring Cygwin) and sup-
ports various compilers. You can find more information on CMake plus a freely
downloadable copy on http://www.cmake.org/.

The pawn toolkit comes with two CMake project files. The first builds the com-
piler as a shared library and a console-mode “front end”. The second builds a
simple run-time program that embeds the abstract machine, a simple console de-
bugger, and various extension modules as shared libraries. The CMake project
files are in the “compiler” and “amx” subdirectories of where the pawn toolkit
source code is installed. When unpacking the pawn source code from a .ZIP

or .TGZ archive, the CMake project files are in these sub-directories below the
directory where you unpacked the archive into.

• Microsoft Windows

1. Launch CMakeSetup.

2. Select for the source code directory, the “compiler” or the “amx” sub-directory
in the directory tree for the toolkit, depending of what you want to build.

For example, if you installed the toolkit in C:\Pawn, the source directory for
the compiler is C:\Pawn\source\compiler.

You may also build both the compiler and the abstract machine in a single run
by selecting the top-level source directory as the source directory of CMake.

3. Select as destination the “bin” sub-directory, or any other directory of your
choice. The makefile (or project files) will be generated in the destination
directory.

4. Select the compiler to use, as well. On Microsoft Windows, CMake supports
Microsoft and Borland compilers, as well as GNU GCC.

5. Click on the “Configure” button. After an initial configuration, you may have
items displayed in red. By this, CMake indicates that these items may need
adjustment, but in the case of pawn, this is rarely needed. Click “Configure”
once more for the final configuration.

88 � Using CMake

6. Click on the “OK” button. This exits the CMakeSetup program after creating
a number of files in the destination subdirectory.

7. Build the program in the usual way. For Microsoft Visual C/C++, CMake
has created a Visual Studio project and “Workspace” files; for other compilers
CMake builds a makefile.

• Linux / Unix

1. Change to the directory where you want to generate the makefile (and build
the executable). Typically, this will be the “bin” sub-directory in the directory
tree for the toolkit. For example, if you installed the toolkit in /opt/Pawn,
the bin sub-directory for the compiler is /opt/Pawn/bin.

If you installed pawn as “root”, then you also need to be root to recompile
pawn.

2. Launch “ccmake ../source/compiler” or “ccmake ../source/amx”, de-
pending on what you want to build (the compiler or the abstract machine).
You can build both at the same time with “ccmake ../source”.

3. Press the “c” key for “configure”. After an initial configuration, you may
have items in the list that have a “*” in front of their value. By this, CMake
indicates that these items may need adjustment, but in the case of pawn, this
is rarely needed. Type “c” once more for the final configuration.

4. Press the “g” button for “generate and quit”. Then build the program by
typing “make”.

5. Optionally, you can then also do a “make install” to copy the executable
files to a path chosen with ccmake.

89

Abstract Machine design and reference
appendix d

The first issue is: why an abstract machine at all? By compiling into the native
machine language of the processor of your choice, the performance will be so much
better.

There is only one real reason to use an abstract machine: cross-platform compat-
ibility of the compiled binary code. At the time that pawn was designed, both
16-bit and 32-bit platforms on the 80x86 processor series were important for me.
By the time I can forget about 16-bit operating systems, alternate microprocessors
(like PowerPC and DEC Alpha) may have become essential.

Other reasons (while not essential) are:

⋄ It is far easier to keep a program running in an abstract machine inside its “sand-
box”. For example, an unbounded recursion in an abstract machine crashes the
abstract machine itself, but not much else. If you run native machine code,
the recursive routine may damage the system stack and crash the application.
Although modern operating systems support multi-threading, with a separate
stack per thread, the default action for an overrun of any stack is still to shut
down the entire application.

⋄ It is easier to design a language where a data object (an array) can contain
P-code which is later executed. Modern operating systems separate code and
data sections: you cannot write into a code section and you cannot execute
data; that is, not without serious effort.

The current pawn language does not have the ability to execute P-code from
an array, but the abstract machine is not too tightly coupled to the language.
That is, future versions of the pawn language may provide a means to execute
a code stream from a variable without requiring me to redesign the abstract
machine.

My first stab at designing an abstract machine was to look at current implementa-
tions. It appears that it is some kind of a tradition to implement abstract machines
as stack machines, even though the design for microprocessors has moved towards
register based implementations. All the abstract machines I encountered are stack
based. These include:

⋄ the B language (predecessor of C)
⋄ bob
⋄ Euphoria

⋄ Java VM (JVM)
⋄ Lua (before version 5)
⋄ Microsoft C/C++ 7.0 (P-code option)

90 � Abstract Machine design and reference

⋄ the Amsterdam Compiler Kit ⋄ QuakeC VM

Stack machines are surely compact, flexible and simple to implement, but they
are also more difficult to optimize for speed. To see why, let’s analyze a specific
example.

a = b + 2; /* where "a" and "b" are simple variables */

Native code
In 32-bit assembler, this would be:

mov eax, [b]

add eax, 2

mov [a], eax

Stack based abstract machine
Forth is the archetype for a stack machine, I will therefore use it as an example.
The same routine in Forth would be:

b @ 2 + a !

where each letter is an instruction (the “@” stands for “fetch” and “!” for store;
note that stack machines run code in “reverse polish notation”). So these are six
instructions in P-code, but the code expands to:

b push offset b

@ pop eax

push [eax]

2 push 2

+ pop edx

pop eax

add eax, edx

push eax

a push offset a

! pop edx

pop eax

mov [edx], eax

Two observations: 1. the stack machine makes heavy use of memory (bad for
performance) and 2. the expanded code is quite large when compared to the
native code (12 instructions versus 3).

The expanded code is what a “just-in-time” compiler (JIT) might make from it
(though one may expect an optimizing JIT to reduce the redundant “pushes” and
“pops” somewhat). When running the code in an abstract machine, the abstract
machine must also expand the code, but in addition, it has overhead for fetching
and decoding instructions. This overhead is at least two native instructions per
P-code instruction (more on this later). For six P-code instructions, one should

Abstract Machine design and reference � 91

add another 12 native instructions to the 12 native instructions of the expanded
code. And still, the example is greatly simplified, because the code runs on the
systems stack and uses the systems address space.

In other words, a stack-based abstract machine runs a native 3-instruction code
snippet in 6 P-code instructions, which turn out to take 24 native instructions,
and more if you want to run the abstract machine on its own stack and in its own
(protected) data space.

Register-based abstract machine
Microprocessors have used registers since their theoretical inception by Von Neu-
mann. Extending this architecture to an abstract machine is only natural. There
are two advantages: the abstract machine instructions map better to the native
instructions (you may actually use the processor’s registers to implement the ab-
stract machine’s registers) and the number of virtual instructions that is needed
to executed a simple expression can be reduced.

As an example, here is the code for the pawn “amx”, a two-register abstract
machine (amx stands for “Abstract Machine eXecutor”):

load.pri b ; "pri" is the primary register, i.e. the accumulator

const.alt 2 ; "alt" is the alternate register

add ; pri = pri + alt

stor.pri a ; store "pri" in variable "a"

In expanded code, this would be:

load.pri b mov eax, [b]

const.alt 2 mov edx, 2

add add eax, edx

stor.pri a mov [a], eax

The four bytecode instructions map nicely to native instructions. Here again, we
will have to add the overhead for fetching and decoding the P-code instructions (2
native instructions per P-code instruction). When compared to a stack-based ab-
stract machine, the register-based abstract machine runs twice as fast; in 12 native
instructions, versus 24 native instructions for a stack-based abstract machine.

There is more: in my experience, stack-based abstract machines are easier to
optimize for size and register-based abstract machines are easier to optimize for
speed. So a register-based abstract machine can indeed be twice as fast as a
stack-based abstract machine.

To elaborate a little further on optimizing: I have intentionally chosen to add
“2” to a variable. Incrementing or decrementing a value by one or two is such a
common case that Forth has a special operator for them: the word “2+” adds 2

92 � Abstract Machine design and reference

to a value. Assuming that a good (stack-based) abstract machine also has special
opcodes for common operations, using this “2+” word instead of the general words
“2” and “+” removes one P-code instruction and 3 native instructions. This would
bring the native instruction count down to 21. However, the same optimization
trick applies to the register-based abstract machine. The pawn abstract machine
has an “add.c” opcode that adds a constant value to the primary register. The
optimized sequence would be:

load.pri b mov eax, [b]

add.c 2 add eax, 2

stor.pri a mov [a], eax

which results to 3 native instructions plus 6 instructions of overhead for fetching
and decoding the P-code instructions. The register-based abstract machine (which
needs 9 native instructions) is still approximately twice as fast as the stack-based
abstract machine (at 21 native instructions).

• Threading

In a “token threaded” interpreter, each opcode is an index in a table that contains
a “jump address” for every instruction. In a “direct threaded” interpreter, the
opcode is the jump address itself. Direct threading often requires that all opcodes
are relocated to jump addresses upon compilation or upon loading a pre-compiled
file. The file format of the pawn abstract machine is designed such that both
token threading and direct threading are possible.

A threaded abstract machine is conventionally written in assembler, because most
high level languages cannot store label addresses in an array. The GNU C compiler
(GCC), however, extends the C language with an unary “&&” operator that returns
the address of a label. This address can be stored in a “void *” variable type
and it can be used later in a goto instruction. Basically, the following snippet
does the same a “goto home”:

void *ptr = &&home;

goto *ptr;

The ANSI C version of the abstract machine uses a large switch statement to
choose the correct instructions for every opcode. Due to direct threading, the
GNU C version of the abstract machine runs approximately twice as fast as the
ANSI C version. Fortunately, GNU C runs on quite a few platforms. This means
that the fast GNU C version is still fairly portable.

Abstract Machine design and reference � 93

• Optimizing in assembler

The following discussion assumes an Intel 80386 or compatible processor. The
same technique also applies to 16-bit processors and to processors of other brands,
but the names (and number) of registers will be different.

It is beneficial to use the processor’s registers to implement the registers of the
abstract machine. The details of the abstract machine for the pawn system follow
later on in this appendix. Further assumptions are:
⋄ PRI is an alias for the processor’s register EAX and ALT is EDX
⋄ ESI is the code instruction pointer (CIP)
⋄ EDI points to the start of the data segment, ECX is the stack pointer (STK), EBX

is the frame pointer (FRM) and EBP is available as a general purpose intermediate
register; the remaining registers in the amx (STP and HEA) are local variables.

Every opcode has a set of machine instructions attached to it, plus a trailer that
branches to the next instruction. The trailer is identical for every opcode. As an
example, below is the implementation of the ADD.C opcode:

add eax, [esi] ; add constant

add esi, 4 ; skip constant

; the code below is the same for every instruction

add esi, 4 ; pre-adjust instruction pointer

jmp [esi-4] ; jump to address

Note that the “trailer” which chains to the next instruction via (direct) threading
consists of two instructions; this trailer was the origin of the premise of a 2-
instruction overhead for instruction fetching and decoding in the earlier analysis.

In the implementation of the abstract machine, one can hand-optimize the se-
quences further. In the above example, the two “add esi, 4” instructions can,
of course, be folded into a single instruction that adds 8 to ESI.

Abstract Machine reference The abstract machine consists of a set of regis-
ters, a proposed (or imposed) memory layout and a set of instructions. Each is
discussed in a separate section.

• Register layout

The abstract machine mimics a dual-register processor. In addition to the two
“general purpose” registers, it has a few internal registers. Below is the list with
the names and description of all registers:

94 � Abstract Machine design and reference

PRI primary register (ALU, general purpose).
ALT alternate register (general purpose).
FRM stack frame pointer, stack-relative memory reads and writes are relative to

the address in this register.
CIP code instruction pointer.
DAT offset to the start of the data.
COD offset to the start of the code.
STP stack top.
STK stack index, indicates the current position in the stack. The stack runs

downwards from the STP register towards zero.
HEA heap pointer. Dynamically allocated memory comes from the heap and the

HEA register indicates the top of the heap.

Notably missing from the register set is a “flags” register. The abstract machine
keeps no separate set of flags; instead all conditional branches are taken depending
on the contents of the pri register.

• Memory image

The heap and the stack share a memory block. The stack grows downwards from
stp towards zero; the heap grows upwards. An exception occurs when the stk and
the hea registers collide. (An exception means that the abstract machine aborts
with an error message. There is currently no exception trapping mechanism.)

Figure 1 is a proposed memory image layout, and one that the standard Abstract
Machine assumes for a self-contained amx “job”. Alternative layouts are possible.
For instance, when you “clone” an amx job, the new job will share the Prefix and
the Code sections with the original job, and have the Data/Heap/Stack sections
in a different memory block. Specifically, an implementation may choose to keep
the heap and the stack in a separate memory block next to the memory block
for the code, the data and the prefix. The top of the figure represents the lowest
address in memory.

The binary file (on disk) consists of the “prefix”, and the code and data sections.
The heap and stack sections are not stored in the binary file, the abstract machine
can build them from information in the “prefix” section. The prefix also contains
start-up information, and the definitions of native and public functions.

Symbolic (debug) information may follow the code and data sections in the file.
This symbolic information is typically not read into memory (at least not by the
abstract machine). See appendix E for details.

Abstract Machine design and reference � 95

P r e f i x

C o d e

D a t a
H e a p

S t a c k
Figure 1: Memory layout of the abstract machine

All multi-byte values in the prefix are stored with the low byte at the lower address
(Little Endian, or “low byte first”). The byte order in the generated code and
data sections is either in Little Endian or in compact encoding —see page 105 for
details on compact encoding.

size 4 bytes size of the memory image, excluding the stack/heap
magic 2 bytes indicates the format and cell size

file version 1 byte file format version, currently 8
amx version 1 byte required minimal version of the abstract machine
flags 2 bytes flags, see below

defsize 2 bytes size of a structure in the “native functions” and the
“public functions” tables

cod 4 bytes offset to the start of the code section
dat 4 bytes offset to the start of the data section
hea 4 bytes initial value of the heap, end of the data section

stp 4 bytes stack top value (the total memory requirements)
cip 4 bytes starting address (main() function), -1 if none

publics 4 bytes offset to the “public functions” table
natives 4 bytes offset to the “native functions” table
libraries 4 bytes offset to the table of libraries

pubvars 4 bytes offset to the “public variables” table
tags 4 bytes offset to the “public tags” table
nametable 4 bytes offset to the symbol name table (file version 7+)

96 � Abstract Machine design and reference

overlays 4 bytes offset to the overlay table (file version 10+)

publics table variable public functions table (see below)
natives table variable native functions table (see below)
library table variable library table (see below)

pubvars table variable public variables table (see below)
tags table variable public tags table (see below)
overlay table variable the overlay table (file version 10+; see below)

name table variable the symbol name table (file version 7+; see below)

The magic value indicates the size of a cell in the P-code of the compiled program.
This value is (in hexadecimal):

F1E0 for a 32-bit cell;

F1E1 for a 64-bit cell;

F1E2 for a 16-bit cell.

Each bit in the flags field contains one setting. Currently, the defined bits are
(bits that are not mentioned are currently not defined):

0 AMX_FLAG_OVERLAY if set, the file is built with overlays

1 (AMX_FLAG_DEBUG) if set, the file contains symbolic (debug) information

2 (AMX_FLAG_COMPACT) if set, the file is compressed with “compact encoding”
—see page 105

3 AMX_FLAG_SLEEP if set, the script uses the “sleep” instruction, which may
cause the script to be re-entrant

4 (AMX_FLAG_NOCHECKS) if set, the code has no debug support at all (no array
bounds-checking, no assertions, no line-tracing support)

11 reserved —this bit is used internally

12 reserved —this bit is used internally

13 reserved —this bit is used internally

14 reserved —this bit is used internally

15 reserved —this bit is used internally

The fixed part of the prefix followed by a series of tables. Each table contains zero
or more records. The name table has a variable record size; the size of the records
in the other tables is in the defsize field in the prefix. To find the number of
records in a table, subtract the offset to the table from the offset to the successive
table, and divide that by defsize. For example, the number of records in the
natives table is:

records =
libraries− natives

defsize

Abstract Machine design and reference � 97

The P-code follows the prefix immediately, but note that the prefix may be padded
in order to align the code and data sections (this is a compiler option). The cod

field in the header is the file offset to the start of the P-code.

In versions 0 to 6 of the P-code files, the records in the public functions table have
the format:
address cell size the address (relative to cod) of the function

name defsize - cell size the name of the public function

As is apparent, the name of the public function is present in the record. The
maximum length of a name of a public function is limited to the size of the record
(minus the number of bytes in a cell, for the bytes taken by the address field).

The format of the native functions table is very similar (see below —this is,
again, the format for file versions 0–6). The order of the records in the table is
important, because the parameter of the SYSREQ.C instruction is an index into
the native functions table.
address cell size used internally, should be zero in the file

name defsize - cell size the name of the native function

The library table has the same format as the native functions table. The “ad-
dress” field is used internally and should be zero in the file. The “name” field
holds the library name.

The “public variables” table, again, has a similar record lay out as the public
functions table. The address field of a public variable contains the variable’s
address relative to the dat section.

The “tags” table uses the same format as well. This table only holds tags whose
name or number might be useful to the host application or extension modules:
tags that are used with the exit or sleep instructions or used with the tagof

operator. The address field of a tag record contains the tag identifier.

As of file version 7, the compiled file includes a “name table”. This table holds
the symbol names for the symbols that the other tables refer to. Each name is in
a variable sized record as a zero-terminated string. The advantage of this schema
is that it allows for arbitrarily long symbol names while storing these names in a
compact fashion.

As the symbol names no longer need to be stored in the tables for the public
and native functions, the public variables, the tags and the libraries, the records
for these tables have changed too. Instead of a name field, the records contain a
4-byte offset, relative to the start of the file “prefix”, to the start of the symbol

98 � Abstract Machine design and reference

name in the name table. The record size in the header, “defsize”, is set to the
size of one cell plus the 4-byte offset —i.e. 8 for a 32-bit cell implementation and
12 for a 64-bit cell implementation. Below is the definition for a native/public
function/variable in file formats 7 and above.

address cell size see descriptions for native/public functions/var.’s
nameofs 4 bytes offset to the symbol name, relative to prefix

The overlay table holds the file offset and the size of each overlay. In the current
implementation, if overlays are active, every function is a separate overlay.

offset 4 bytes offset of the start of the overlay

size 4 bytes size of the overlay, in bytes

• Instruction reference

Every instruction consists of an opcode followed by zero or one parameters. Each
opcode is one byte in size; an instruction parameter has the size of a cell (usually
four bytes). A few “debugging” instructions (at the end of the list) form an
exception to these rules: they have two or more parameters and those parameters
are not always cell sized.

Many instructions have implied registers as operands. This reduces the number
of operands that are needed to decode an instruction and, hence, it reduces the
time needed to decode an instruction. In several cases, the implied register is part
of the name of the opcode. For example, PUSH.pri is the name of the opcode
that stores the pri register on the stack. This instruction has no parameters: its
parameter (pri) is implied in the opcode name.

The instruction reference is ordered by opcode. The description of two opcodes
is sometimes combined in one row in the table, because the opcodes differ only in
a source or a destination register. In these cases, the opcodes and the variants of
the registers are separated by a “/”.

The “semantics” column gives a brief description of what the opcode does. It uses
the C language syntax for operators, which are the same as those of the pawn
language. An item between square brackets indicates a memory access (relative
to the dat register, except for jump and call instructions). So, PRI = [address]

means that the value read from memory at location DAT + address is stored in
pri.

opcode mnemonic parameters semantics

1/2 LOAD.pri/alt address PRI/ALT = [address]

Abstract Machine design and reference � 99

3/4 LOAD.S.pri/alt offset PRI/ALT = [FRM + offset]

5/6 LREF.pri/alt address PRI/ALT = [[address]]

7/8 LREF.S.pri/alt offset PRI/ALT = [[FRM + offset]]

9 LOAD.I PRI = [PRI] (full cell)

10 LODB.I number PRI = “number” bytes from [PRI] (read 1/2/4 bytes)

11/12 CONST.pri/alt value PRI/ALT = value

13/14 ADDR.pri/alt offset PRI/ALT = FRM + offset

15/16 STOR.pri/alt address [address] = PRI/ALT

17/18 STOR.S.pri/alt offset [FRM + offset] = PRI/ALT

19/20 SREF.pri/alt address [[address]] = PRI/ALT

21/22 SREF.S.pri/alt offset [[FRM + offset]] = PRI/ALT

23 STOR.I [ALT] = PRI (full cell)

24 STRB.I number “number” bytes at [ALT] = PRI (write 1/2/4 bytes)

25 LIDX PRI = [ALT + (PRI × cell size)]

26 LIDX.B shift PRI = [ALT + (PRI << shift)]

27 IDXADDR PRI = ALT + (PRI × cell size) (calculate indexed address)

28 IDXADDR.B shift PRI = ALT + (PRI << shift) (calculate indexed address)

29/30 ALIGN.pri/alt number Little Endian: PRI/ALT =̂ cell size− number

31 LCTRL index PRI is set to the current value of any of the special registers.

The index parameter must be: 0=COD, 1=DAT, 2=HEA,

3=STP, 4=STK, 5=FRM, 6=CIP (of the next instruction)

32 SCTRL index set the indexed special registers to the value in PRI.

The index parameter must be: 2=HEA, 4=STK, 5=FRM,

6=CIP

33/34 MOVE.pri/alt PRI=ALT / ALT=PRI

35 XCHG Exchange PRI and ALT

36/37 PUSH.pri/alt [STK] = PRI/ALT, STK = STK − cell size

38 PICK offset PRI = [STK + offset]

39 PUSH.C value [STK] = value, STK = STK − cell size

40 PUSH address [STK] = [address], STK = STK − cell size

41 PUSH.S offset [STK] = [FRM + offset], STK = STK − cell size

42/43 POP.pri/alt STK = STK + cell size, PRI/ALT = [STK]

44 STACK value ALT = STK, STK = STK + value

45 HEAP value ALT = HEA, HEA = HEA + value

46 PROC [STK] = FRM, STK = STK − cell size, FRM = STK

47 RET STK = STK + cell size, FRM = [STK],

STK = STK + cell size, CIP = [STK],

The RET instruction cleans up the stack frame and returns

from the function to the instruction after the call.

100 � Abstract Machine design and reference

48 RETN STK = STK + cell size, FRM = [STK],

STK = STK + cell size, CIP = [STK],

STK = STK + [STK]

The RETN instruction removes a specified number of bytes

from the stack. The value to adjust STK with must be

pushed prior to the call.

49 CALL offset [STK] = CIP + 5, STK = STK − cell size

CIP = CIP + offset

The CALL instruction jumps to an address after storing the

address of the next sequential instruction on the stack.

The address jumped to is relative to the current CIP,

but the address on the stack is an absolute address.

50 CALL.pri [STK] = CIP + 1, STK = STK − cell size

CIP = PRI

jumps to the address in PRI after storing the address of the

next sequential instruction on the stack.

51 JUMP offset CIP = CIP + offset (jump to the address relative from

the current position)

52 JREL offset obsolete

53 JZER offset if PRI == 0 then CIP = CIP + offset

54 JNZ offset if PRI != 0 then CIP = CIP + offset

55 JEQ offset if PRI == ALT then CIP = CIP + offset

56 JNEQ offset if PRI != ALT then CIP = CIP + offset

57 JLESS offset if PRI < ALT then CIP = CIP + offset (unsigned)

58 JLEQ offset if PRI <= ALT then CIP = CIP + offset (unsigned)

59 JGRTR offset if PRI > ALT then CIP = CIP + offset (unsigned)

60 JGEQ offset if PRI >= ALT then CIP = CIP + offset (unsigned)

61 JSLESS offset if PRI < ALT then CIP = CIP + offset (signed)

62 JSLEQ offset if PRI <= ALT then CIP = CIP + offset (signed)

63 JSGRTR offset if PRI > ALT then CIP = CIP + offset (signed)

64 JSGEQ offset if PRI >= ALT then CIP = CIP + offset (signed)

65 SHL PRI = PRI << ALT

66 SHR PRI = PRI >> ALT (without sign extension)

67 SSHR PRI = PRI >> ALT with sign extension

68 SHL.C.pri value PRI = PRI << value

69 SHL.C.alt value ALT = ALT << value

70 SHR.C.pri value PRI = PRI >> value (without sign extension)

71 SHR.C.alt value ALT = ALT >> value (without sign extension)

Abstract Machine design and reference � 101

72 SMUL PRI = PRI * ALT (signed multiply)

73 SDIV PRI = PRI / ALT (signed divide), ALT = PRI mod ALT

74 SDIV.alt PRI = ALT / PRI (signed divide), ALT = ALT mod PRI

75 UMUL PRI = PRI * ALT (unsigned multiply)

76 UDIV PRI = PRI / ALT (unsigned divide), ALT = PRI mod ALT

77 UDIV.alt PRI = ALT / PRI (unsigned divide), ALT = ALT mod PRI

78 ADD PRI = PRI + ALT

79 SUB PRI = PRI − ALT

80 SUB.alt PRI = ALT − PRI

81 AND PRI = PRI & ALT

82 OR PRI = PRI |ALT

83 XOR PRI = PRI ˆ ALT

84 NOT PRI = !PRI

85 NEG PRI = −PRI

86 INVERT PRI = ~PRI

87 ADD.C value PRI = PRI + value

88 SMUL.C value PRI = PRI * value

89/90 ZERO.pri/alt PRI/ALT = 0

91 ZERO address [address] = 0

92 ZERO.S offset [FRM + offset] = 0

93/94 SIGN.pri/alt sign extent the byte in PRI or ALT to a cell

95 EQ PRI = PRI == ALT ? 1 : 0

96 NEQ PRI = PRI != ALT ? 1 : 0

97 LESS PRI = PRI < ALT ? 1 : 0 (unsigned)

98 LEQ PRI = PRI <= ALT ? 1 : 0 (unsigned)

99 GRTR PRI = PRI > ALT ? 1 : 0 (unsigned)

100 GEQ PRI = PRI >= ALT ? 1 : 0 (unsigned)

101 SLESS PRI = PRI < ALT ? 1 : 0 (signed)

102 SLEQ PRI = PRI <= ALT ? 1 : 0 (signed)

103 SGRTR PRI = PRI > ALT ? 1 : 0 (signed)

104 SGEQ PRI = PRI >= ALT ? 1 : 0 (signed)

105 EQ.C.pri value PRI = PRI == value ? 1 : 0

106 EQ.C.alt value PRI = ALT == value ? 1 : 0

107/108 INC.pri/alt PRI = PRI + 1 / ALT = ALT + 1

109 INC address [address] = [address] + 1

110 INC.S offset [FRM + offset] = [FRM + offset] + 1

111 INC.I [PRI] = [PRI] + 1

102 � Abstract Machine design and reference

112/113 DEC.pri/alt PRI = PRI − 1 / ALT = ALT − 1

114 DEC address [address] = [address] − 1

115 DEC.S offset [FRM + offset] = [FRM + offset] − 1

116 DEC.I [PRI] = [PRI] − 1

117 MOVS number Copy memory from [PRI] to [ALT]. The parameter

specifies the number of bytes. The blocks should not

overlap.

118 CMPS number Compare memory blocks at [PRI] and [ALT]. The parameter

specifies the number of bytes. The blocks should not

overlap.

119 FILL number Fill memory at [ALT] with value in [PRI]. The parameter

specifies the number of bytes, which must be a multiple

of the cell size.

120 HALT 0 Abort execution (exit value in PRI), parameters other than 0

have a special meaning.

121 BOUNDS value Abort execution if PRI > value or if PRI < 0

122 SYSREQ.pri call system service, service number in PRI

123 SYSREQ.C value call system service

124 FILE size ord obsolete

name

125 LINE line ord obsolete

126 SYMBOL size offset obsolete

flag name

127 SRANGE level size obsolete

128 JUMP.pri CIP = PRI (indirect jump)

129 SWITCH offset Compare PRI to the values in the case table (whose address

is passed as an offset from CIP) and jump to the associated

the address in the matching record.

130 CASETBL . . . A variable number of case records follows this opcode, where

each record takes two cells. See the notes below for details

on the case table lay-out.

131/132 SWAP.pri/alt [STK] = PRI/ALT and PRI/ALT = [STK]

133 PUSH.ADR offset [STK] = FRM + offset, STK = STK − cell size

134 NOP no-operation, for code alignment

135 SYSREQ.N addr n macro: PUSH.C n; SYSREQ.C adr; STACK n+4

136 SYMTAG value obsolete

137 BREAK conditional breakpoint —see appendix E

138 PUSH2.C c1 c2 macro: replaces two PUSH.C opcodes

Abstract Machine design and reference � 103

139 PUSH2 a1 a2 macro: replaces two PUSH opcodes

140 PUSH2.S o1 o2 macro: replaces two PUSH.S opcodes

141 PUSH2.ADR o1 o2 macro: replaces two PUSH.ADR opcodes

142 PUSH3.C c1 – c3 macro: replaces three PUSH.C opcodes

143 PUSH3 a1 – a3 macro: replaces three PUSH opcodes

144 PUSH3.S o1 – o3 macro: replaces three PUSH.S opcodes

145 PUSH3.ADR o1 – o3 macro: replaces three PUSH.ADR opcodes

146 PUSH4.C c1 – c4 macro: replaces four PUSH.C opcodes

147 PUSH4 a1 – a4 macro: replaces four PUSH opcodes

148 PUSH4.S o1 – o4 macro: replaces four PUSH.S opcodes

149 PUSH4.ADR o1 – o4 macro: replaces four PUSH.ADR opcodes

150 PUSH5.C c1 – c5 macro: replaces five PUSH.C opcodes

151 PUSH5 a1 – a5 macro: replaces five PUSH opcodes

152 PUSH5.S o1 – o5 macro: replaces five PUSH.S opcodes

153 PUSH5.ADR o1 – o5 macro: replaces five PUSH.ADR opcodes

154 LOAD.both a1 a2 PRI = [a1], ALT = [a2]

155 LOAD.S.both o1 o2 PRI = [FRM + o1], ALT = [FRM + o2]

156 CONST adr val [adr] = val

157 CONST.S off val [FRM + off] = val

• Branching

With a few exceptions, branch instructions (call, jump, etc.) use relative target
addresses. The parameters of these opcodes are offsets relative to the address of
the opcode itself. The offset can be both positive and negative. Using relative
branch addresses makes the binary code “position independent”.

The exceptions are: the ret and retn instructions that branch to an absolute
address that was stored on the stack by an earlier call instruction, and the
jump.pri and call.pri instructions that branch to a calculated address.

• Macro instructions

To improve speed and to reduce the memory footprint of the compiled programs,
the abstract machine includes several macro instructions. These macro instruc-
tions are a sequence of “plain” instructions, in a single opcode. This reduces the
memory size, of course, because now a single opcode replaces two or more plain
opcodes; it also improves performance, by virtue of reducing the overhead of the
P-code decoder inside the abstract machine.

104 � Abstract Machine design and reference

Plain opcodes have zero parameters or one parameter, whereas a macro opcode
has two or more opcodes. A few debugging opcodes in the above table also had
more than one parameter, but these opcodes are now all obsolete.

Macro instructions are incompatible with the current JIT compilers —since a JIT
compiler removes the instruction decoding overhead, macro instructions have no
advantages over plain opcodes when using a JIT compiler. The pawn compiler
can optionally disable the generation of macro instructions.

• Opcode packing

Recent versions of the pawn compiler support “packed opcodes”. These are in-
structions where the opcode and its parameter are packed in a single cell. All
packed opcodes have a single parameter. The concept of packed opcodes is a
“space optimization”, to reduce the size that a running script takes in memory.
Opcode packing requires token threading.

• Native call opcodes

There are two opcodes that are not in the opcode table. These are called SYSREQ.D

and SYSREQ.ND. These opcodes are direct call variants of SYSREQ.C and SYSREQ.N

respectively. The pawn compiler never generates them, which is why they are not
in the table. These opcodes are generated by the abstract machine itself.

When the script calls a native function, the current revision of the pawn compiler
generates a SYSREQ.N opcode, and older revisions generate a SYSREQ.C opcode.
Both these opcodes cause a jump out of the abstract machine to a routine that
handles the dispatching of native functions. You can set up such a routine with
amx_SetCallback, but there also is a default routine —called amx_Callback. The
callback/dispatcher function must look up the native function from the parameter
of the originating SYSREQ.* opcode and then call that native function with the
function parameters forwarded. There is a double call in this chain: the SYSREQ.*
opcode causes a call to the callback∗ function, which then calls the requested
native function.

The SYSREQ.D and SYSREQ.ND opcodes remove one call, and thereby improve the
performance of the native call link. After the callback function has looked up

∗
It is called a callback function because it “calls back” into the host application. The host

application called the abstract machine and to execute a native function, the flow of control

goes back from the abstract machine to the host application.

Abstract Machine design and reference � 105

the address of the native function, it patches this address right into the code
stream of the compiled script, and it changes the SYSREQ.N opcode to SYSREQ.ND

—or SYSREQ.C opcode to SYSREQ.D for older systems. The next time this native
function is called, there is a new opcode, which calls to the address of the native
function directly, bypassing the callback.

This “trick” only works if you use the default callback, or if you implement a
similar patching functionality in your custom callback. It also requires that the
P-code stream is writeable. If you store the code section of the compiled script
in (Flash) ROM, the callback function will be unable to patch the opcodes.

• Compact file format

The pawn compiler generates output P-code as either a straightforward dump of
the opcodes, or in a variable-length encoding similar to that of the MIDI “SMF”
files. The “plain” encoding uses Little Endian for all opcodes as data words,
meaning that a Big Endian processor should swap all cells that it reads from the
P-code file before executing them. The alternative, “compact binary files”, not
only have a reduced size, the file format is also universal for Big Endian and Little
Endian computers.

The header of the module (see page 95) and all tables (public functions, native
functions, libraries public variables) are not compressed —these are always in
Little Endian. The data that follows these tables is encoded with variable length
codes: every four-byte cell is encoded in one to five bytes.

The highest bit of each byte is a “continuation” bit. If it is set, another bytes
with seven more significant bits follows. The most significant 7 bits are stored
first (at the lower file offset/memory address). When a series of bytes have been
decoded, bit 6 (the next to most signification bit) of the first byte is repeated to
fill the complete 32-bits.

Decoding examples:
0x21 0x00000021

0x41 0xffffffc1

0x80 0x41 0x00000041

0x7f 0xffffffff

• Cross-platform support

There is some level of cross-platform support in the abstract machine. Both Big
Endian and Little Endian memory addressing schemes are in common use today.

106 � Abstract Machine design and reference

Big Endian is the “network byte order”, as it is used for various network protocols,
notably the Internet protocol suite. The Intel 80x86 and Pentium CPU series use
Little Endian addressing.

The abstract machine is optimized for manipulating “cells”, 32-bit quantities.
Bytes or 16-bit words can only be read or written indirectly, by first generating
an address and then use the LODB.I or STRB.I instructions. The ALIGN.pri

instruction helps in generating the address.

The abstract machine assumes that when multiple characters are packed in a cell,
the first character occupies the highest bits in the cell and the last character is in
the lowest bits of the cell. This is how the pawn language stores packed strings.
On a Big Endian computer, the order of the characters is “natural” in the sense
that the first character of a pack is at the lowest address and the last character is
at the highest address. On a Little Endian computer, the order of the characters
is reversed. When accessing the second character of a pack, you should read/write
from a lower address then when accessing the first character of the pack.

The pawn compiler could easily generate the required extra code to adjust the
address for each character in the pack. The draw-back would be that a module
written for a Big Endian computer would not run on a Little Endian computer and
vice versa. So instead, the pawn compiler generates a special ALIGN instruction,
whose semantics depend on whether the abstract machine runs on a Big Endian or
a Little Endian computer. More specifically, the ALIGN instruction does nothing
on a Big Endian computer and performs a simple bitwise “exclusive or” operation
on a Little Endian computer.

• The “switch” instruction and case table lay-out

The switch instruction compares the value of pri with the case value in every
record in the associated case table and if it finds a match, it jumps to the address
in the matching record. The switch opcode has one parameter, which is the
address of the case table, relative to cip (the instruction pointer). At this address,
a casetbl opcode should appear.

Every record in a case table, except the first, contains a case value and a jump
address, in that order. The jump address is relative to the address of the record
itself. The first record keeps the number of subsequent records in the case table in
its first cell and the “none-matched” jump address in its second cell. If none of the
case values of the subsequent records matches pri, the switch instruction jumps

Abstract Machine design and reference � 107

to this “none-matched” address. Note again that the first record is excluded in
the “number of records” field in the first record.

The records in the case table are sorted on their value. An abstract machine may
take advantage of this lay-out to search through the table with a binary search.

108

Debugging support
appendix e

Debugging support comprises two components: the break opcodes and the sym-

See page 10 for
an example im-
plementation of
the debug hook

bolic information format. The pawn compiler inserts a break opcode in front of
any instruction sequence that starts a statement in the source code. Hence, when
a debug hook is set up, the hook function is called before the abstract machine
executes the P-code for the statement.

When the debug hook serves as a full (symbolic) debugger, it will then need
to browse through the symbolic information for the source files. The compiler
attaches the symbolic information to the binary P-code file. The symbolic infor-
mation consists of a header and several variable sized tables.

size 4 bytes size of the symbolic information chunk
magic 2 bytes signature, must be 0xF1Ef
file version 1 byte file format version, currently 8
amx version 1 byte required minimal version of the abstract machine
flags 2 bytes flags, see below
files 2 bytes number of entries in the “file table”
lines 2 bytes number of entries in the “line table”
symbols 2 bytes number of entries in the “symbol table”
tags 2 bytes number of entries in the “tag name table”
machines 2 bytes number of entries in the “machine table”
states 2 bytes number of entries in the “state table”

Following the header are, in this order:
⋄ the file table
⋄ the line table
⋄ the symbol table
⋄ the tag name table
⋄ the machine name table
⋄ the state name table

When there are zero entries in any table, the table itself is completely absent
from the file. Most tables have variable-length entries, meaning that you have to
browse through the symbolic information to locate a specific record.

• The file table

The entries in the file have the following format:

address cell size starting address (relative to cod)

Debugging support � 109

name variable zero-terminated string

The address field gives the address in the code segment at which the generated
P-code for the file starts. The entire table is sorted on this address field. Given an
address relative to the cod pseudo-register, you can look up the file from which
the P-code at that address was generated.

P-code from a single file may land on several address ranges in the P-code —
through file inclusions, for example. In such case, there are several entries in the
file table for the same file.

• The line table

The line table holds line numbers; it is used in combination with the file table:

address cell size starting address (relative to cod)
line 4 bytes line number

This table maps the addresses in the P-code to line numbers. The file names
(relative to which the line numbers are) must be looked up from the file table.
The line table is sorted on the address field. The address is the lowest address
at which the generated P-code for the source code line starts. It is common that
a break instruction appears on this line.

• The symbol table

Entries for a symbol (variable, function) are more complex:

address cell size address (relative to data or stack)
tag 2 bytes tag for the symbol
codestart cell size starting address (in cod) for scope
codeend cell size ending address (in cod) for scope
ident 1 byte kind of symbol (function/variable)
vclass 1 byte class of symbol (global/local)
dim 2 bytes number of dimensions
name variable zero-terminated string
symdim variable optional symbol dimension records

The address is relative to either the code segment (cod), the data segment
(dat) or to the frame of the current function —whose address is in the frm
pseudo-register. The ident and vclass fields indicate to which pseudo-register
the address relates, and enables you to locate the value of the symbol.

The possible values for the ident field are:

110 � Debugging support

1 a variable
2 a “reference”, a variable that contains an address to another variable (in

other words, a pointer).
3 an array
4 a reference to an array (a pointer to an array)
9 a function
10 a reference to a function (a pointer to a function)

The values of the vclass field are:
0 the symbol refers to a global variable (relative to dat) or to a function

(relative to cod)
1 the symbol refers to a local variable with a stack relative address (relative

to frm; the address field may be positive or negative)
2 the symbol refers to a “static” local variable; the address is not stack

relative, but instead relative to dat

The codestart and codeend addresses are relative to the cod pseudo-register.
These addresses give the address range in which the symbol is “in scope”. For local
variables, this is the address range of the compound block in which the variable
declaration occurs. Global variables have the ending address set to the last valid
P-code address in the file. For functions, the starting and ending address are the
address range that the P-code for the function takes. For a function, the fields
address and codestart are equal.

The tag field is a numeric tag identifier. You can look up the tag name in the
tag table.

When the symbol is an array, or a reference to an array, the dim field indicates the
number of dimensions, and the number of “symbol dimension” (symdim) records
that follow the symbol. When an array has two dimensions, dim is 2 and two
symdim records follow the zero-terminated name field. Each symdim record has
the format:
tag 2 bytes tag for the array dimension (index)
size cell size size of the dimension (0 if unknown)

When the “size” field of a symdim record is zero, the array size (for that dimen-
sion) is indeterminate.

• The tag name table

The tag name table enables looking up a tag name from an identifier:

tag 2 bytes tag id

Debugging support � 111

name variable zero-terminated string

A debugger may use the tag name to select an appropriate display format. For
example, when a debugger determines that the tag name of a symbol is “Float:”,
it may choose to automatically display the symbol’s value as a floating point value,
rather than (mis-)interpreting it as an integer.

The “tags” table in the “prefix” of the abstract machine (see figure 1 and page
95) also contains a map from tag identifiers to tag names. The table in the prefix
area only contains “exported” tags (which may be needed by any host program).
The table in the debugging information contains all tags that are used in the
program.

• The automaton table

For scripts that define multiple automaton, the automaton table holds all automa-
ton names. The pawn compiler also generates a “state variable” per automaton.
The address of this variable (relative to the dat pseudo-register) is also in the
automaton table.
automaton 2 bytes automaton id

address 4 bytes address of the “state variable”
name variable zero-terminated string

• The state table

For each state defined in the script, there is an entry in the state table. Every
state relates to an automaton. If no automaton is explicitly defined, the state
uses automaton id 0 (zero).

state 2 bytes state id

automaton 2 bytes automaton id
name variable zero-terminated string

• Functions

In order to make browsing through debug information easier, the pawn toolkit
comes with support functions that perform the basic tasks of looking up functions,
variables and source code line numbers from addresses. These functions are in
the files amxdbg.c and amxdbg.h. These functions are provided as “example
implementations” —you may want (or need) to adapt them to your environment.

112

Code generation notes
appendix f

The code generation of the pawn compiler is fairly straightforward (also due to
the simplicity of the abstract machine). A few points are worth mentioning:

⋄ The abstract machine has instructions that the pawn compiler currently does
not generate. For example, the LREF.pri instruction works like the dereference
operator (“*”) in C/C++. pawn does not support pointers directly, but refer-
ences are just pointers in disguise. pawn only supports references in function
arguments, however, which means that the “pointer operations” in pawn are
always stack-relative. In other words, the pawn compiler does not generate the
LREF.pri instruction, although if does generate the LREF.S.pri instruction.

The abstract machine is fairly independent from the pawn language, even
though they were developed for each other. The pawn language can easily
grow in the future, possibly with a “reference” variable type, thereby giving
the LREF.pri instruction a reason of being. The abstract machine cannot eas-
ily grow, however, because new instructions immediately make the new abstract
machine incompatible with previous versions. That is, programs compiled for
the new abstract machine won’t run on the earlier release.

⋄ For a native function, the pawn compiler generates a SYSREQ.C instruction
instead of the normal function call. The parameter of the SYSREQ.C instruction
is an index in the native function table. A function in pawn cleans up its
arguments that were pushed on the stack, because it returns with the RETN

instruction. The SYSREQ.C instruction does not remove items from the stack,
so the pawn compiler does this explicitly with a STACK instruction behind the
SYSREQ.C instruction.

The arguments of a native function are pushed on the stack in the same manner
as for a normal function.

In the “pawn” implementation of the abstract machine (see page 6), the “sys-
tem request” instructions are linked to the user-installed callback function.
Thus, a native function in a pawn program issues a call to a user-defined call-
back function in the abstract machine.

⋄ At a function call, a pawn program pushes the function arguments onto the
stack in reverse order (that is, from right to left). It ends the list of function
arguments on the stack by pushing the number of bytes that it pushed to the
stack. Since the pawn compiler only passes cell-sized function arguments to

Code generation notes � 113

a function, the number of bytes is the number of arguments multiplied by the
size of a cell.

A function in pawn ends with a RETN instruction. This instruction removes the
function arguments from the stack.

⋄ When a function has a “reference” argument with a default value, the compiler
allocates space for that default value on the heap.

For a function that has an array argument with a default value, the compiler
allocates space for the default array value on the heap. However, if the array
argument (with a default value) is also const, the pawn compiler passes the
default array directly (there is no need to make a copy on the heap here, as the
function will not attempt to change the array argument and, thereby, overwrite
the default value).

⋄ The arguments of a function that has “variable arguments” (denoted with the
... operator, see the pawn booklet “The Language”) are always passed by
reference. For constants and expressions that are not lvalues , the compiler
copies the values to a cell that is allocated from the heap, and it passes the
address of the cell to the function.

⋄ For the “switch” instruction, the pawn compiler generates a switch opcode
and a case table with the casetbl opcode. The case table is generated in the
cod segment; it is considered “read-only” data. The “none-matched” address
in the case table jumps to the instruction of the default case, if any.

Case blocks in pawn are not drop through. At the end of every instruction in a
case list, the pawn compiler generates a jump to an “exit” label just after the
switch instruction. The pawn compiler generates the case table between the
code for the last case and the exit label. By doing this, every case, including
the default case, jumps around the case table.

⋄ Multi-dimensional arrays are implemented as vectors that hold the offsets to the
sub-arrays. For example, a two-dimensional array with four “rows” and three
“columns” consists of a single-dimensional array with four elements, where each
element is the offset to a three-element single-dimensional array. The total
memory footprint of array is 4 + 4× 3 cells. Multi-dimensional arrays in pawn
are similar to pointer arrays in C/C++.

As stated above, the “major dimension” of multi-dimensional arrays holds the
offsets to the sub-arrays. This offset is in bytes (not in cells) and it is relative to
the address of the cell from which the offset was read. Returning to the example

114 � Code generation notes

of a two-dimensional array with four rows and three columns (and assuming a
cell size of four bytes), the memory block that is allocated for the array starts
with the four-cell array for the “rows”, followed by four arrays with each three
elements. The first “column” array starts at four cells behind the “rows” array
and, therefore, the first element of the “rows” array holds the value 4× cellsize
(16 for a 32-bit cell). The second column array starts at three cells behind the
first column array, which is seven cells behind start of the rows array. The offset
to the second column array is stored in the it second element of the rows array,
and the offset of the second column relative to the second cell of the rows array
is six cells. The second value in the rows array is therefore 6 × cellsize.

For a specific example, assume an array that is declared as:

new values[4][3] = { { 1, 1, 1 },

{ 2, 2, 2 },

{ 3, 3, 3 },

{ 4, 4, 4 } }

The sequence of values in memory for this array, where a “c” suffix on a number
means that the value should be scaled for the size of a cell in bytes, is:

4c, 6c, 8c, 10c, 1, 1, 1, 2, 2, 2, 3, 3, 3, 4, 4, 4

For a three-dimensional array, the entries in the vector for the major dimension
hold the offsets to vectors for each minor dimension. The vector tables for all
dimensions come in front of the contents of the array.

⋄ The destructor operator takes an array with a single dimension on input, and
this array holds all elements of a variable that must be destructed:

• For simple variables, the variable is passed by reference, which makes it
appear as an array with one element.

• For arrays with one dimension, the array is passed without modification

• For arrays with two or more dimensions, the destructor operator receives the
address behind the “indirection tables” for the major dimensions. As doc-
umented above, a multi-dimensional array starts with vectors for the major
dimensions that each hold the offsets to the dimension below itself. The
data for the array itself is packed behind these offset arrays. By passing the
address where the array data starts, the destructor operator can access the
array elements as if it were an array with a single dimension.

⋄ As of version 2.0, the pawn compiler puts a HALT opcode at the start of the
code (so at code address 0). Before jumping to the entry point (a function), the
abstract machine pushes a zero return address onto the stack. When the entry
point returns, it returns to the zero address and sees the HALT instruction.

Code generation notes � 115

⋄ The sleep instruction generates a HALT opcode with the error code 12 (“sleep”).
When the abstract machine sees this special error code, it saves the state of the
stack/heap (rather than resetting it), in order to be able to restart the abstract
machine.

⋄ The pawn compiler adds special comments to the assembler file (with the forms
“;$exp” and “;$par”) to aid the peephole optimizer to make the correct deci-
sions. These comments mark the end of an “expression statement” or the end
of a function parameter. The code generated by the compiler does not carry the
value of a register from one statement/expression to another, and the peephole
optimizer uses this information to avoid saving registers whose values will not
be used again anyway.

⋄ For functions that have states, the compiler creates a jump table at the function
address; each entry jumps to a specific implementation. Technically, the table
is a “case table” similar to the one used for a “switch” statement and it indeed
uses the switch opcode to jump to the correct implementation. The “default”
case points to the fall-back function, or to an error exit point if a fall-back
function was absent.

As an aside, this schema is more efficient than a hand-coded switch on a state
variable, because a hand-coded switch would need to reside inside a function
of its own, using an extra function frame and using extra stack to store another
return address and to forward and parameters.

116

Adding a garbage collector
appendix g

pawn uses only static allocation for all of its objects. The advantage of static
allocation is that the memory requirements of a pawn script are easy to determine
(the pawn compiler does this with the -d2 option), and that the memory footprint
and run-time performance become fully deterministic.

That non-withstanding, for dealing with dynamically sized objects in pawn, a
garbage collector is very convenient. This appendix describes how a garbage
collector can be added to a host application that uses the pawn toolkit. It is
implemented as a separate library.

• How to use

The purpose of the garbage collector is to notify your program of objects that
are no longer in use and that can, hence, be released. To this end, the garbage
collector needs a data structure to register objects that are in use and it needs
a way to notify the host application (your program) of redundant objects. These
two elements must be initialized before you start using the garbage collector.

The data structure that records objects that are “in-use” is a hash table. Its
size must be a power of two —in fact, the parameter that you pass to function
gc_settable is the “power”. That is, passing 10 as the argument to gc_settable

creates a hash table that holds 210, or 1024, items. There is a low bound on the
size of 128 elements, meaning that the exponent parameter must be at least 7.
The maximum size of the hash table is the maximum value of a signed integer:
32,767 for 16-bit platforms and 2,147,483,648 for 32-bit platforms (the maximum
exponent is 15 or 31 for 16-bit and 32-bit platforms respectively). The second
parameter to gc_settable is a collection of flags. The only flag defined at this
writing is GC_AUTOGROW, which tells the garbage collector that it may automati-
cally increase the size of the hash table when it becomes full.

For every object that is no longer referred to in any abstract machine that was
scanned, the garbage collector calls a callback function to release it. But first,
you have to register this callback function, of course. This, you do with function
gc_setcallback.

By intent, the signature for the callback function has been made compatible with
the standard C function free. If your host program allocates its objects with
malloc, then you may be able to set the standard free function as the garbage

Adding a garbage collector � 117

collector callback. If you need additional clean-up code, or if you do not allocate
the objects with malloc, you have to write an appropriate callback.

Once the hash table and the callback are set, your host program (or your native
function library) can allocate objects and mark them as “used” with the function
gc_mark. The value that you pass in must a non-zero value that uniquely identifies
the object, and it must be a “cell” data type —the data type of the pawn
language. If the size of a pointer is the same as that of a cell (or smaller), you can
mark a pointer to an object (by simply casting it as a cell). Other mechanisms
are that you allocate the object from a list that you maintain internally, and
“mark” the index to the object in this list. It is important that you mark exactly
the same value as what the native function returns to the pawn script.

Once every while, on a timer or at any other moment that is convenient, the host
program should call gc_scan once or multiple times, followed by a single call to
gc_clean. Before gc_clean finishes, it invokes the callback function for every
object that is no longer referenced. The parameter to the callback function is the
same value that you have passed to gc_mark for the function. Function gc_scan

detects “live” objects, function gc_clean cleans up any object that is not alive.

A host application may run multiple scripts concurrently, and it may therefore
have multiple abstract machines in existence at any time. The garbage collector
collects the object references for all objects that were allocated for all abstract
machines. When performing a garbage collection run, the program should scan
all abstract machines (using gc_scan) and finish with a single call to gc_clean.
When an abstract machine disappears, all objects allocated to that abstract ma-
chine (that are not referred to by other abstract machines) are cleaned up in the
subsequent garbage collection run —simply because gc_scan is not called on the
abstract machine that is gone.

At the end of the program, call gc_settable with size zero. Earlier I wrote that
there is a lower bound on the input value to gc_settable of 7, but the value zero
is a special case. As an aside, gc_settable calls gc_clean internally when the
table exponent is zero, to dispose any remaining object in the table.

• Rescaling the garbage collector

The garbage collector is built on a hash table, which is allocated dynamically. A
hash table is a data structure that allows quick look-up. It does this by calculating
an index value from some arbitrary property of the object and it stores a reference
to the object at that calculated index in the table. For the garbage collector, the

118 � Adding a garbage collector

index is calculated from the “value” parameter that you pass into the function
gc_mark.

A hash table should not be too small —because it can store no more objects than
fit in the table, and it should not be too large, as that would waste memory and
decrease performance. The garbage collector makes the table size adjustable: you
can start running with a small table and grow it on an “as needed” basis. If
desired, you may also shrink the hash table. Growing or shrinking the hash table
preserves the objects currently in the table.

A problem with hash tables in general is that of “collisions”: two different objects
may get the same index in the hash table. There are various strategies of coping
with this situation; the garbage collector uses the simplest one: “probing”. If
a collision occurs, the new object is not stored at its calculated index, but at a
fixed offset from the calculated index. To avoid clusters in the table, the offset
decreases from roughly a quarter of the table size (except for tables exceeding 64
kiB) down to 1; to avoid “blind spots” in the table, the probing offset is always a
prime number.

When the hash table is full, gc_mark may first attempt to grow the table (de-
pending on whether the GC_AUTOGROW was set in the call to gc_settable). It
returns with an error code if growing the table fails or if it is not permitted. The
host program can then do a garbage collection run, in the hope that this frees up
some slots in the hash table; the host program may also attempt to grow the hash
table itself. As the hash table is allocated dynamically, the attempt to resize it
may also fail. The end result is that gc_mark may fail and your host program has
no way to recover from it.

Unrecoverable failure of gc_mark can be avoided, though: instead of waiting for
a full table to happen, a host program can decide to grow the table well before
it becomes full. If that fails, gc_mark still succeeds and the next few calls to
gc_mark will also succeed. Hence, the host application has the opportunity to
free up memory or inform the user of “low memory” —a message that is friendlier
than one like “out of memory, cannot continue”.

There is another reason why early growing of the hash table is a good strategy:
performance. Linear probing is a simple method for coping with collisions, but
it also leads to heavily degraded performance once the hash table fills up. It is
probably best when the hash table usage does not exceed 50%. The function
gc_tablestat returns the current “load” of the hash table, in a percentage of its
size.

Adding a garbage collector � 119

• An example implementation

To use the garbage collector in an example, we must first have a native function
library that creates garbage. For this example, I have chosen the “Better String
library” by Paul Hsieh, a library that enables working with dynamically allocated
variable length strings in C/C++.

The first step is to create wrapper functions for a subset of the library. For the
purpose of demonstrating the garbage collector, I have chosen a minimal subset,
just enough to run the example program below —in real applications you would
add significantly more functions:

#include <bstring>

main()

{

new String: first = bstring("Hello")

new String: second = bstring("World")

new String: greeting = first + bstring(" ") + second

new buffer[30]

bstrtoarray .target = buffer, .source = greeting

printf buffer

}

Two primary native functions implemented below perform a conversion to or from
pawn arrays: n_bstring and n_bstrtoarray. Conversion from an array to the
“bstring” type (of the Better String library) is needed to handle literal strings;
the conversion back to a pawn array is needed because the native functions in
the “console i/o” extension module do not support the bstring type. Again,
in practice you would probably modify the printf and other native functions to
work with bstring, so that converting back to pawn arrays is never necessary.

#define VERIFY(exp) do if (!(exp)) abort(); while(0)

static cell AMX_NATIVE_CALL n_bstring(AMX *amx,const cell *params)

/* native String: bstring(const source[] = ""); */

{

cell hstr = 0;

char *cstr;

amx_StrParam(amx, params[1], cstr);

if (cstr != NULL) {

hstr = (cell)cstr2bstr(cstr);

VERIFY(gc_mark(hstr));

} /* if */

return hstr;

}

120 � Adding a garbage collector

static cell AMX_NATIVE_CALL n_bstrtoarray(AMX *amx,const cell *params)

/* native bstrtoarray(target[], size = sizeof target,

* String: source, bool: packed = false);

*/

{

char *cstr = bstr2cstr((const bstring)params[3], ’#’);

int length = strlen(cstr) + 1;

cell *cellptr;

if (params[4])

length *= sizeof(cell);

if (params[2] >= length) {

amx_GetAddr(amx, params[1], &cellptr);

amx_SetString(cellptr, cstr, params[4], 0);

} /* if */

free(cstr);

return 0;

}

static cell AMX_NATIVE_CALL n_bstrdup(AMX *amx,const cell *params)

/* native String: bstrdup(String: source); */

{

cell hstr = (cell)bstrcpy((const bstring)params[1]);

VERIFY(gc_mark(hstr));

return hstr;

}

static cell AMX_NATIVE_CALL n_bstrcat(AMX *amx,const cell *params)

/* native String: bstrcat(String: target, String: source); */

{

cell hstr = params[1];

bconcat((bstring)hstr, (const bstring)params[2]);

return hstr;

}

The wrapper functions that allocate new bstring instances are different from
common wrapper functions in that they call gc_mark. Note that the wrapper
functions that do not create new bstring instances do not need to mark an
object to the garbage collector.

Error checking is primitive in this example. When the garbage collector’s hash
table is full and it cannot grow, the program simply aborts. As discussed in a
preceding section, it is advised to grow the table well before it would become full.

Now we must modify the host application to set up the garbage collector. In my
case, this is an adapta

Initializing the garbage collector is an easy step, because the memory de-allocator
for the “Better String library” is compatible with the callback function of the

Adding a garbage collector � 121

garbage collector. All one has to do is to insert the following lines somewhere
before the call to amx_Exec:

gc_setcallback((GC_FREE)bdestroy);

gc_settable(7, GC_AUTOGROW); /* start with a small table */

Cleaning up the garbage collector before exiting is easy too:

gc_settable(0); /* delete all objects and the hash table */

The harder part is running the garbage collector at appropriate times. On one
hand, you will want to call the garbage collector regularly, so that the table does
not contain too much “garbage”; on the other hand, calling the garbage collector
too often decreases the overall performance. Actually, it would be best if the
collector ran at times that CPU usage is low.

Even if we just wish to call the garbage collector on a regular interval, a minor
problem is that there is no portable way of doing so. In Linux and Unix, you may
use the signal and alarm functions and in Microsoft Windows the SetTimer

function may be of use. Multi-threading is another option, but be aware that you
have to implement “mutual exclusion” access yourself (e.g. with semaphores, or
a critical section).

The function that performs a garbage collection run may be like the one below.
The function expects the abstract machines to scan in an array. It grows the hash
table when its usage exceeds 50%.

void garbagecollect(AMX amx[], int number)

{

int exp, usage, n;

/* see whether it may be a good time to increase the table size */

gc_tablestat(&exp, &usage);

if (usage > 50) {

if (gc_settable(exp+1, GC_AUTOGROW) != GC_ERR_NONE)

fprintf(stderr, "Warning, memory low\n");

} /* if */

/* scan all abstract machines */

for (n = 0; n < number; n++)

gc_scan(&amx[n]);

/* clean up unused references */

gc_clean();

}

122 � Adding a garbage collector

With the goal of providing a complete example that compiles and runs on all
platforms∗ that the pawn toolkit currently supports, I have “hooked” function
garbagecollect (implemented above) onto the debug hook. That is, the host
application sets up a debug hook and the debug hook function calls garbagecol-
lect on various events. Doing this in anything other than a demo program is not
advised, for several reasons:

⋄ The debug hook can only monitor a single abstract machine, whereas you are
likely to have multiple concurrent abstract machines in real projects.

⋄ To call the garbage collector at a regular interval, monitoring the DBG_LINE

opcode is the best option. However, this debug code will never be sent when
the script was compiled without debug information.

⋄ The debug hook does not consider system load, whereas you would want the
garbage collection to take place especially when the system is not busy.

⋄ The debug hook carries some overhead (though just a little).

That behind us, below is a debug hook that calls the garbage collector. It calls the
garbage collector after executing every 100 lines and after each function return.
Acting on the DBG_RETURN code circumvents problems for pawn scripts that are
compiled without debug information.

int AMXAPI prun_Monitor(AMX *amx)

{

static int linecount;

if (--linecount > 0)

return AMX_ERR_NONE;

linecount = 100;

garbagecollect(amx, 1);

return AMX_ERR_NONE;

}

• Other notes

As discussed earlier, the gc_clean function invokes the callback function to free
any object that is no longer in use in any abstract machine that was scanned.
The function assumes that the callback indeed frees the object: it will not report
it again.

∗
The standard distribution comes with the source code for a minimal host application, in the

subdirectory “amx/pawnrun/” of where the toolkit was installed.

Adding a garbage collector � 123

Each object should only be in the hash table once. If you call gc_mark with a
value that is already in the hash table, the function returns an error. It is a non-
fatal error, but nevertheless it is better to avoid adding the same pointer/object
twice to the garbage collection table.

The probing algorithm used by the garbage collector differs from both the well
known linear and quadratic probing algorithms, but its properties (related to
clustering or “clumping”) are similar to those of quadratic probing.

The design of a good hash function/equation is another recurring theme in re-
search. As the garbage collector discussed here is general purpose, nothing about
the input key (the parameter to gc_mark) may be assumed. The hash genera-
tion algorithm used in the garbage collector “folds” the key value a few times,
depending on the size of the “cell” and the size of the hash table. Folding means
that the key value is split in half and the two halves are combined with an “ex-
clusive or” operation. Concretely, if the hash table exponent (the first parameter
to gc_settable) is less than, or equal to 16, a 32-bit key value is first split into
two 16-bit values and then the upper half is “exclusive or’ed” to the first half,
resulting in a single 16-bit value —the new key. When the table exponent is less
than, or equal to 8, the folding occurs twice.

Frequently, the origin of the key value is a pointer. In typical memory managers,
the lowest bits are fixed. For example, it is typical that memory is allocated at
an address that is a multiple of 8 bytes, to ensure optimal alignment of data. The
hash table function attempts to copy with this particular aspect by swapping all
bits of the least-significant byte.

124

Running scripts from ROM
appendix h

The default configuration of the pawn Abstract Machine assumes that the P-
code runs from RAM. Various functions modify (or patch) the P-code after it
is loaded. To run a compiled script directly from ROM, you need to build the
Abstract Machine with a few specific options and you also need to compile the
pawn source code in a particular way.

The “compact encoding” and the run-time patching of native function calls are
incompatible with ROM execution, and these must both be disabled. See page
105 for details on compact encoding and the discussion at page 104 for the patch-
ing that occurs with native function calls. The compile-time flags to use are
AMX_COMPACTMARGIN (set this to 0) and AMX_DONT_RELOCATE.

When compiling with GNU GCC or when using an assembler kernel for the ab-
Threading con-
cepts: 74 stract machine, it is advisable to force “token threading” by defining the macro

AMX_TOKENTHREADING. Token threading is compatible with ROM execution, unlike
the alternative “direct threading” threading implementation that pawncan use.
If support for packed opcodes is left enabled, token threading is also the default of
the abstract machine. When you disable the support for packed opcodes (option
AMX_NO_PACKED_OPC), the abstract machine will use “direct threading” (which is
incompatible with ROM execution) unless token threading is explicitly set.

In addition, the indirection table that matches native functions to a script cannot
be altered (it is in ROM too). As explained on page 65, the solution is to use a
native table with hardcoded unique (negative) numbers for the native functions.
Since the numbers are hardcoded, function amx_Register is redundant.

In the callback function (for native functions), you will then need to map the
unique negative numbers to function pointers. A simple way to do this is to use
an array, where the unique number serves as the index —after taking its absolute
value. This table-based lookup avoids any name comparison or (binary) table
search. To use table-based lookup, the macro AMX_NATIVETABLE must be set to
the name of a global variable that holds the function addresses. For details, see
and further.

Function amx_Init, the first function to call on an abstract machine, receives a
pointer to the start of the header and the P-code. Unless told otherwise, amx_Init
considers that the data and stack areas follow the P-code immediately. In the
case of running from ROM, the P-code and the combined data/stack sections

Running scripts from ROM � 125

must reside in different blocks: the data/stack section must be in RAM and the
P-code is in ROM. To configure the abstract machine as such, store the address of
a RAM block of suitable size in the data field of the AMX structure prior to calling
amx_Init, and pass a pointer to the P-code in ROM as the second parameter to
amx_Init.

unsigned char amx_dataseg[DATASIZE]; /* data + stack */

extern const unsigned char amx_pcode[]; /* P-code in ROM */

AMX amx;

memset(&amx, 0, sizeof amx);

amx.data = (unsigned char*)amx_dataseg;

error = amx_Init(&amx, amx_pcode);

Function amx_Init will copy the contents of the data section of the script in ROM
to the pointer in the data field. This is necessary because the data section of the
script contains string literals and other initialized static and global data. Option-
ally, you can also skip this step: by adding the constant AMX_FLAG_DSEG_INIT to
the flags field of the amx structure prior to calling amx_Init, the data section
will not be initialized —leaving that for you to do explicitly. For example:

memset(&amx, 0, sizeof amx);

amx.data = (unsigned char*)amx_dataseg;

amx.flags = AMX_FLAG_DSEG_INIT;

error = amx_Init(&amx, amx_pcode);

/* add code to initialize amx_dataseg */

The pawn compiler must also be configured to generate P-code that is suitable for
execution from ROM. Since the Abstract Machine is compiled without support
for compact encoding and with hardcoded indices for native functions, the pawn
compiler should have the option -C:- on the command line and the include file(s)
must declare all native functions with hardcoded indices. It is practical to add
the -C:- option to the file pawn.cfg so that it is always taken into effect. See the
“Language Guide” for details on pawn.cfg.

The pawn compiler must also be able to generate “position-independent code”.
Recent versions of the pawn compiler do this, but releases before version 3.3
generate relocatable code, which is incompatible with execution from ROM.

Other configurations for the compiler are best set in an include file. The pawn
compiler always tries to include the file default.inc implicitly and before any
other include file. It has become common practice to let default.inc include
any other “standard” include files and to add configuration options.

126 � Running scripts from ROM

In order to get small compiled “smallcapsamx” files, we strip off as many un-
needed tables as we can. Part of these are the names of the native functions;
this was already explained above, in the discussion of the native function table
implementation in the abstract machine. The table with library names can be
removed completely. The library table is used for dynamically loading extension
modules, on operating systems that support this (Microsoft Windows, Linux), but
it is useless on embedded operating systems. To turn the library table generation
off, put the following pragma in an include file (e.g. default.inc):

#pragma library -

It is a good idea to also tell the pawn compiler how much memory a compiled
script may take at run time. This is controlled by the pragmas amxlimit and
amxram. For example:

#pragma amxlimit 8192 /* 8 kiB available for code */

#pragma amxram 4096 /* 4 kiB available for data + stack */

127

Running scripts with overlays
appendix i

If your system has a (read-only) backing store of sufficient size, overlays enable
scripts with a large code footprint to run in little RAM memory. An overlay
system is akin to virtual memory, but for code only (no data) and with compiler
support. Advantages of overlays are that they require only read access to a mass
storage medium (so this can be ROM) and that it does not impact run-time
performance as much as true virtual memory systems. A disadvantage of overlays
is that there is still a limit on the data and stack portions of the script.

To use overlays, the following steps should be taken:

⋄ The script must be compiled with overlay support. See below and see the
“Language Guide” for details —briefly: you have to use the option “-V” on the
compiler.

⋄ In the call to amx_Init, you have to initialize a few fields in the amx structure.
Unless told otherwise, amx_Init assumes that the amx header, the code section
and the data section are consecutively in a single memory block. The reason
for using overlays, though, is that you cannot provide a single memory block
with the required size.

⋄ You have to implement a helper function that loads overlays from the back-
ing store into memory. That function must also adjust two fields in the amx
structure.

• Configuring the compiler

The -V option allows you to set the maximum allowable size of an overlay. As
this value depends on the implementation, you may want to “fix” that value. One
option is to add a conditional definition in the standard include file, as in:

#if overlaysize > 0

#pragma overlaysize 2040 // set the maximum overlay size of 2040

#endif

The trick used here is that if overlays are enabled, the predefined constant over-
laysize is always greater than zero. When the user adds the option “-V” to
the command line (without setting a size), overlaysize is set to 1. The pragma
overrules the standard value (i.e. “1”) or any value that the user specified with
the implementation-defined value.

128 � Running scripts with overlays

Note that the value set for the pragma “overlaysize” must be the largest over-
lay that will fit in the available memory of the overlay manager. If the overlay
manager has overhead for an allocation, this “overhead” value must subtracted
from the overlaysize. Notably, the overlay manager included in the pawn dis-
tribution has an overhead of 8 bytes for a typical 32-bit system. If you set aside a
memory block of 2048 bytes for this overlay manager, the maximum value of the
pragma overlaysize is 2040.

An alternative configuration is that the implementation has a maximum size for
the total of the overlay pool, the data and the heap plus stack. In this case, set
the pragma amxlimit to that total size and set overlaysize to 1 (if overlays are
to be used). The maximum size for an overlay then depends on the size of the
data and of the heap and stack.

• Initializing the abstract machine

The code snippet below is typical for initializing an abstract machine with over-
lays. Instead of reading the entire file in a single memory block, the snippets
prepares three areas: one for the header, one for the combined data/heap/stack
and a swap region for overlays. This may technically reside in a single memory
block, but that is not required.

/* assume the file to a ".amx" file is already opened and that its

* handle is in fpAmx. Also assume that "header", "datablock" and

* "overlaypool" are pointers to memory blocks of sufficient size.

*/

/* read the AMX header */

rewind(fpAmx);

fread(header, 1, hdr.cod, fpAmx);

/* read the data section (the memory block should have sufficient

* size to also hold the heap and stack)

*/

fseek(fpAmx, hdr.dat, SEEK_SET);

fread(datablock, 1, hdr.hea - hdr.dat, fpAmx);

/* initialize the overlay pool (size 2048 bytes) */

amx_poolinit(overlaypool, 2048);

/* initialize the abstract machine */

memset(amx, 0, sizeof *amx);

amx->data = datablock;

amx->overlay = prun_Overlay;

result = amx_Init(amx, header);

Running scripts with overlays � 129

In the above snippet, the data field of the AMX structure is set to a specific
value, and it was then read from file. The complete amx header of the compiled
script (including the function, name and overlay tables) is also read, in a separate
memory block.

The pawn toolkit comes with an implementation of a “memory pool” with a
“least revently used” queue. The function amx_poolinit comes from this module.
You may choose to use (or implement) a different overlay manager. The basic
requirement is that it should never fail, provided that the total memory size is
sufficiently big for the largest overlay. Memory fragmentation should never be a
reason for the overlay manager to fail.

• The overlay callback function

The previous code snippet sets a callback function for loading and managing
overlays, here called prun_Overlay (you may of course choose a different name).
The callback controls the loading and the memory allocation. In a simple case,
the function could look like the one below:

int AMXAPI prun_Overlay(AMX *amx, int index)

{

AMX_HEADER *hdr;

AMX_OVERLAYINFO *tbl;

hdr = (AMX_HEADER*)amx->base;

tbl = (AMX_OVERLAYINFO*)(amx->base + hdr->overlays) + index;

amx->codesize = tbl->size;

amx->code = amx_poolfind(index);

if (amx->code == NULL) {

amx->code = amx_poolalloc(tbl->size, index);

fseek(fpAmx, (int)hdr->cod + tbl->offset, SEEK_SET);

fread(amx->code, 1, tbl->size, fpAmx);

} /* if */

return AMX_ERR_NONE;

}

The function assumes that the file to the compiled script is (still) open and that
its handle is in a global variable called “fpAmx”. The function first checks whether
the index for the overlay is valid. Then it checks whether the overlay is already in
memory. The overlay manager can keep multiple overlays in memory concurrently;
if an overlay is already in memory, there is no need to reload it. If the overlay
is not in memory, the function allocates a block of a suitable size and loads the
relevant portion of the compiled script into that block.

The overlay callback must also adjust two fields in the amx structure: code and
codesize. The field code must point to the start of the overlay. Since each

130 � Running scripts with overlays

overlay is a separate (and complete) function, the code field points to the start
of the function after loading the overlay into memory. The codesize field is the
size, in bytes, of the overlay. The abstract machine uses this field for detecting
stack overruns and other troubles. Note that the overlay callback must adjust
these fields even if the overlay function is already in memory.

To better present the essence of the code, no error checking is present in the
Alternatively,
an implementa-
tion can browse
through all over-
lays to check
their size before
calling amx Init

function presented above. On a well configured system, overlay loading should
never fail. However, to guard against a script that was compiled with an incor-
rect value for the maximum overlay size, you may want to add a check whether
amx_poolalloc returns NULL. For instance, replace the call to amx_poolalloc

with:
if ((amx->code = amx_poolalloc(tbl->size, index)) == NULL)

return AMX_ERR_OVERLAY; /* failure allocating memory for the overlay */

Function amx_Init calls the overlay callback (called “prun_Overlay” in this ap-
pendix) for every overlay in the compiled script. Any overlay that is too big for
the pool is thus detected before amx_Init returns.

• Loading scripts with and without overlays

In your system, you may want to give the end user the option of whether to
run their scripts with overlays or without overlays. Scripts with overlays always
run slower than scripts without overlays, because of the overhead in the overlay
loading. So you could give the script writers the choice between performance and
memory.

When loading the compiled script, you must then verify whether the script uses
overlays, by checking the AMX_FLAG_OVERLAY bit in the flags field in the format-
ted part of the amx header. If this bit is set, proceed with loading/initializing
the script as described in this appendix; if cleared, use the procedure on page 8.

131

License
appendix j

The software toolkit “pawn” (the compiler, the abstract machine and the sup-
port routines) are copyright c© 1997–2008 by ITB CompuPhase. The Intel assem-
bler implementation of the abstract machine and the just-in-time compiler (specif-
ically the files amxexec.asm, amxjitr.asm and amxjits.asm) are c© 1998-2003
Marc Peter. The file amxjitsn.asm is partially c© 2004 G.W.M. Vissers. The file
amxexecn.asm is partially c© 2004–2006 ITB CompuPhase.

pawn is distributed under the “zLib/libpng” license, which is reproduced below:

This software is provided “as-is”, without any express or implied warranty. In no
event will the authors be held liable for any damages arising from the use of this
software.

Permission is granted to anyone to use this software for any purpose, including
commercial applications, and to alter it and redistribute it freely, subject to the
following restrictions:

1 The origin of this software must not be misrepresented; you must not claim
that you wrote the original software. If you use this software in a product, an
acknowledgement in the product documentation would be appreciated but is
not required.

2 Altered source versions must be plainly marked as such, and must not be
misrepresented as being the original software.

3 This notice may not be removed or altered from any source distribution.

The zLib/libpng license has been approved by the “Open Source Initiative” orga-
nization. q
The pawn documentation is copyright c©1997–2008 by ITB CompuPhase, and
licensed under the Creative Commons Attribution/ShareAlike 2.5 License. To
view a copy of this licence, visit

http://creativecommons.org/licenses/by-sa/2.5/
or send a letter to Creative Commons, 559 Nathan Abbott Way, Stanford, Cali-
fornia 94305, USA. Below is a “human-readable” summary of the Legal Code (the
full licence).

You are free:

132 � License

⋄ to copy, distribute, display, and perform the work
⋄ to make derivative works
⋄ to make commercial use of the work

Under the following conditions:
⋄ Attribution. You must give the original author credit.
⋄ Share Alike. If you alter, transform, or build upon this work, you may

distribute the resulting work only under a licence identical to this one.
⋄ For any reuse or distribution, you must make clear to others the licence terms

of this work.
⋄ Any of these conditions can be waived if you get permission from the copyright

holder.

Your fair use and other rights are in no way affected by the above.

133

Index

⋄ Names of persons (not products) are in italics.
⋄ Function names, constants and compiler reserved words are in typewriter

font.

! #pragma, 61

A Abstract Machine, 6–48
design, 91
file format, 95
opcodes, 98
registers, 93
stack based, 89

alarm, 121
Alignment (memory), 123
alloca, 45, 56
amx GetAddr, 55, 63
amx GetString, 55
amx InitJIT, 80
amx Push, 18
amx PushArray, 20
amx PushString, 18
amx SetDebugHook, 10
amx SetString, 55
amx StrLen, 55
amx StrParam, 56, 63
ANSI terminal, 73
Argument passing, 18

arrays, 20
numeric, 18
strings, 18

ARM processor, 77, 78
ARM7, 78

ASCII, 68
Assembler, 92, 93

B Basic Multilingual Plane, 73

Better String library, 119

Big Endian, 9, 24, 55, 105

Binary tree, 60

BOB, 89

Borland C++, 76, 79, 82, 84, 86

Borland TASM, 78

bstring, 119

Byte order, 9, 24, 94, 105

Bytecode, See P-code

C C++, 58

Cache, 60

Calling conventions, 73, 77, 78, 81,
85

Calling public functions, 17

Class method, 58

CMake, 67, 72, 87

Codepage, 73

Collisions

hash table, 118

Compact encoding, 69, 75, 96, 105

Compiler, 4

deployment, 4

Configuration file, 4

CR/LF, 67

Cross-reference, 69

curses, 77

134 � Index

D Data section, 25, 27, 29, 32, 55, 57
Debug hook, 10, 12, 13, 82
Debugger interface, 82, 108
Default include file, 1
Deployment

abstract machine, 6
compiler, 4

Dispatcher
native functions ~, 63

DLL, 70, 74, 85
dos2unix, 67
Dynamic linking, 4, 6, 61, 85

E Errors
run-time ~, 48

Exported functions, 74, 85
Extension modules, 50, 63, 112
External scope, 52

F Fixed point support, 84
Floating point support, 84, 85
Foreign function interface, 50, see

also Extension modules
Forth, 90
free, 116
FreeBSD, 77, 79, 82
Functions

native ~, 50
variable arguments, 19

G Garbage collection, 116
gc clean, 117
gc mark, 117, 118, 123
gc scan, 117
gc setcallback, 116
gc settable, 116, 123
GNU GCC, 67, 77, 79, 82, 84, 92
GraphApp, 83

H Hash table, 60, 116, 123
hash function, 123
probing, 123

Hook functions, 78
Hsieh, Paul, 119

I Implicit include file, 1
ISO/IEC 10646-1, 73

J Java, 89
Just-In-Time compiler, 49, 80, 104

L LBF (Low Byte First), See Little
Endian

LCC-Win32, 76, 79
License, 131

Linker .DEF file, 62
Linux, 4, 6, 61, 67, 70, 74, 77, 79, 81,

82, 84, 85, 121
Little Endian, 9, 24, 55, 94, 105

Low Byte First, See Little Endian
Lua, 89

M Macro instructions, 69, 103

Magic value (AMX version), 96
Makefile, 87

malloc, 56, 116
MASM, See Microsoft MASM

Matrix multiplication, 57
Mean, 22

Median, 22
memcpy, 21

memmove, 21
Microsoft MASM, 78

Microsoft Visual C/C++, 67, 76, 77,
79, 80

Index � 135

Microsoft Windows, 61, 62, 73, 74,
85, 121

mprotect, 81
Multi-dimensional arrays, 57

N Name mangling, 85
C++, 62

NASM, See Netwide Assembler
Native functions, 50

~ dispatcher, 63
include file, 53, 62
passing arrays, 57

ncurses, 77
Netwide assembler, 78
NX (no execute), 80

O Olympic mean, 22
Opcode packing, 69, 74, 104
OpenBSD, 77, 79, 82
OpenGL, 57
Optimizer, 68, 115
Overlays, 127

P P-code, 76, 97
Packed

~ opcodes, 69, 74, 104

~ strings, 106
Parameter checking, 63
Pass by reference, 56
Passing arguments, 18

arrays, 20
numeric, 18
strings, 18

pc compile, 70
Peephole optimizer, 68, 115
Peter, Marc, 77, 80
Plug-in extensions, 6, 61, 85
Position Independent Code, 103

Pre-processor, 68

Prefix file, 1

Probing

hash table, 118, 123

Public functions

calling ~, 17

Q
Quadratic probing

hash table, 123

R
Response file, 5

ROM (running from ~), 34, 65, 74,
105, 124

rot13, 20

ROT13 encryption, 20

S
Sections

data ~, 25, 27, 29, 32, 55, 57

Security, 62, 63

SetTimer, 121

Shared library, 70, 74, 85

SIGINT, 11

signal, 11, 121

Software CPU, 63

Static linking, 53, 61, 85

STL (Standard Template Library),
59, 60

Surrogate pair, 73

Symbolic information, 108

SYSREQ.C, 64

System request, 64

136 � Index

T TASM, See Borland TASM
Thompson, Ken, 89
Thread-safe, 37
Threading, 92

direct ~, 74, 92, 93
switch ~, 74, 92
token ~, 74, 75, 92, 104

Trimmed mean, 22
Type cast, 28, 30, 54

U UCS-4, 68, 73
Unicode, 18, 33, 40, 43, 73, 76, 83
Unicows, 83
UNIX, 6, 61, 70, 74, 85, 121
Unix, 4
User value, 14
UTF-8, 45–47, 68, 73, 83

V Variable arguments, 19
Virtual Machine, See Abstract ~
VirtualAlloc, 16, 81
vmalloc exec, 81
Von Neumann, 91
VT100 terminal, 73

W WASM, See Watcom WASM
Watcom C/C++, 77, 80, 82, 83
Watcom WASM, 78
Wide character, 73
Win32 Console, 73
Wrapper functions, 53

X XD (execution denied), 80

Z ZLib (license), 131

	Introduction
	The compiler
	Deployment / installation
	The configuration file
	Compiler errors
	Run time errors

	The abstract machine
	Deployment / installation
	Using the abstract machine
	Controlling program execution
	A smarter "break-out" hook
	Monitoring stack/heap usage
	Preparing for memory-hungry scripts

	Calling "public" functions
	Function reference
	Error codes

	Extension modules
	1. Writing the native functions
	2. Linking the functions to the abstract machine
	3. writing an include file for the native functions
	Writing "wrappers"
	Pass-by-value, the simplest case
	Floating point
	Strings
	Pass-by-reference
	Arrays
	Wrapping class methods (C++ interface)

	Dynamically loadable extension modules
	Error checking in native functions
	Customizing the native function dispatcher

	Appendices
	Building the compiler
	Compile-time options
	Summary of definitions
	Embedding the compiler into an application

	Building the Abstract Machine
	Summary of definitions
	ANSI/GNU C
	Assembler core for the Abstract Machine
	Just-In-Time compiler
	Adding a terminal to the abstract machine
	Support for floating point in the Abstract Machine
	Compiling "dynamically loadable" modules

	Using CMake
	Microsoft Windows
	Linux / Unix

	Abstract Machine design and reference
	Threading
	Optimizing in assembler
	Register layout
	Memory image
	Instruction reference
	Branching
	Macro instructions
	Opcode packing
	Native call opcodes
	Compact file format
	Cross-platform support
	The "switch" instruction and case table lay-out

	Debugging support
	The file table
	The line table
	The symbol table
	The tag name table
	The automaton table
	The state table
	Functions

	Code generation notes
	Adding a garbage collector
	How to use
	Rescaling the garbage collector
	An example implementation
	Other notes

	Running scripts from ROM
	Running scripts with overlays
	Configuring the compiler
	Initializing the abstract machine
	The overlay callback function
	Loading scripts with and without overlays

	License

	Index

