
Pawn

embedded scripting language

Floating Point Support Library

August 2007

Abstract
The “pawn” programming language has only native sup-
port for integers. This document describes an extension
to the pawn run-time environment that adds support for
“floating point” rational values.

The software that is associated with this application note
can be obtained from the company homepage, see section
“Resources”

The floating point extension module was originally written
by Greg Garner, c© 1999, Artran, Inc.

Introduction . 1
Implementing the library . 2
Usage .3
Native functions . 5
Custom operators . 11
Resources .13
Index . 15

ITB CompuPhase

ii

“Microsoft” and “Microsoft Windows” are registered trademarks of Microsoft Corporation.

“Linux” is a registered trademark of Linus Torvalds.

“CompuPhase” is a registered trademark of ITB CompuPhase.

Copyright c© 2003–2011, ITB CompuPhase; Eerste Industriestraat 19–21, 1401VL
Bussum, The Netherlands (Pays Bas); telephone: (+31)-(0)35 6939 261
e-mail: info@compuphase.com, WWW: http://www.compuphase.com

The information in this manual and the associated software are provided “as is”.
There are no guarantees, explicit or implied, that the software and the manual
are accurate.

Requests for corrections and additions to the manual and the software can be
directed to ITB CompuPhase at the above address.

Typeset with TEX in the “Computer Modern” and “Palatino” typefaces at a base size of 11 points.

1

Introduction

The “pawn” programming language is a simple C-like extension/scripting lan-
guage. The only data type that it supports is an integer (usually 32 or 64 bits
wide), called a cell . The pawn programming language is described in its manual
and it is freely available; see the section “Resources” for more information. This
Floating Point support library adds “IEEE 754 floating point” arithmetic and
values to the “pawn” programming language.

Floating point values represent very small values and very large values with (ap-
proximately) the same number of significant digits. This property makes floating
point numbers very suitable for engineering and general-purpose arithmetic with
rational values. For the IEEE 754 32-bit format, the number of significant digits
is about 7.

In computer applications, rational values have limited precision, regardless of how
they are implemented. It is well known, for example, that the value 0.1 cannot
be represented exactly in the floating point format standardized in IEEE 754 (the
most common format, and also the format used in this extension library). In
applied science and engineering, this is relatively unimportant because the input
values often originate from measurements or approximative computations, which
are imprecise to begin with.

This appendix assumes that the reader understands the pawn language. For
more information on pawn, please read the manual “The pawn booklet — The
Language” which is available from the company homepage.

2

Implementing the library

The floating point support library consists of the files float.c and float.inc.
The C file may be “linked in” to a project that also includes the pawn Abstract
Machine (amx.c), or it may be compiled into a DLL (Microsoft Windows) or a
shared library (Linux). The .inc file contains the definitions for the pawn com-
piler of the native functions in float.c, as well as several user-defined operators.
In your pawn programs, you may either include this file explicitly, using the #in-
clude preprocessor directive, or add it to the “prefix file” for automatic inclusion
into any pawn program that is compiled.

The float.inc also sets the rational number format for the pawn compiler to a
floating point number (using #pragma rational). This may lead to a conflict if a
different rational number format was already set. Specifically, you may not be able
to use this floating point extension module together with a fixed point module.
Such conflicts can be resolved by removing the #pragma rational directive from
either module.

The “Implementer’s Guide” for the pawn toolkit gives details for implementing
the extension module described in this application note into a host application.
The initialization function, for registering the native functions to an abstract
machine, is amx_FloatInit and the “clean-up” function is amx_FloatCleanup.
In the current implementation, calling the clean-up function is not required.

If the host application supports dynamically loadable extension modules, you may
alternatively compile the C source file as a DLL or shared library. No explicit
initialization or clean-up is then required. Again, see the Implementer’s Guide for
details.

The extension module amxcons.c (console input/output) has some support for
floating point values. You have to enable this support by compiling the file with
the FLOATPOINT macro defined.

3

Usage

Depending on the configuration of the pawn compiler, you may need to explicitly
include the float.inc definition file. To do so, insert the following line at the top
of each script:

#include float

The #pragma rational setting in float.inc allows you to specify rational literal
numbers directly. For example:

new Float: amount = 123.45

amount += 78.90

To convert from integers to floating point values, use one of the functions float
or strfloat. The function float creates a floating point number with the same
integral value as the input value and a fractional part of zero. Function strfloat

makes a floating point number from a string, which can include a fractional part.

A user-defined assignment operator is implemented to automatically coerce integer
values on the right hand to a floating point format on the left hand. That is, the
lines:

new a = 10

new Float: b = a

are equivalent to:

new a = 10

new Float: b = float(a)

To convert back from floating point numbers to integers, use the functions float-
round and floatfract. Function floatround is able to round upwards, to round
downwards, to “truncate” and to round to the nearest integer. Function float-

fract gives the fractional part of a floating point number, but still stores this as
a floating point number.

The common arithmetic operators: +, -, * and / are all valid on floating point
numbers, as are the comparison operators and the ++ and -- operators. The
modulus operator % is forbidden on floating point values.

The arithmetic operators also allow integer operands on either left/right hand.
Therefore, you can add an integer to a floating point number (the result will be
a floating point number). This also holds for the comparison operators: you can
compare a floating point number directly to an integer number (the return value
will be true or false).

4 � Usage

Due to the limited precision of floating point arithmetic, the calculated value may
be slightly off the exact/correct answer. Over time, these fractional rounding
errors can accumulate. It is therefore advised to avoid comparing two floating
point values for bit-for-bit equality. For example, for the novice programmer the
following pawn program may give an unexpected result:

Listing bad way to compare floating point values (prone to rounding errors)

#include float

main()

{

new Float: a = 0.0

new Float: b = 1.0

for (new i = 0; i < 10; i++)

a += 0.1

if (a == b)

printf("%f and %f are equal\n", a, b)

else

printf("%f is not the same as %f\n", a, b)

}

Instead, you should verify whether the two values lie within a small range —such a
comparison range allowing for inexactness in the calculations is typically referred
to as ǫ (epsilon). The example below makes conveniently use of chained relational
operators to do the comparison.

Listing allow minor deflections when comparing floating point values

#include float

const Float: epsilon = 0.00001

main()

{

new Float: a = 0.0

new Float: b = 1.0

for (new i = 0; i < 10; i++)

a += 0.1

if (-epsilon <= a - b <= epsilon)

printf("%f and %f are equal\n", a, b)

else

printf("%f is not the same as %f\n", a, b)

}

For details on floating point inexactness, and improved range checking, see section
“Resources”.

5

Native functions

float Convert integer to floating point

Syntax: Float: float(value)

value the input value.

Returns: A floating point number with the same (integral) value as the pa-
rameter (provided that the integral value is in range).

See also: floatround, strfloat

floatadd Add two floating point numbers

Syntax: Float: floatadd(Float: oper1, Float: oper2)

oper1

oper2 The values to add together.

Returns: The result: the sum of oper1 and oper2.

Notes: The user-defined + operator forwards to this function.

See also: floatdiv, floatmul, floatsub

floatabs Return the absolute value of a floating point number

Syntax: Float: floatabs(Float: value)

value The value to return the absolute value of.

Returns: The absolute value of the parameter.

6 � floatcmp

floatcmp Compare two floating point numbers

Syntax: Float: floatcmp(Float: oper1, Float: oper2)

oper1

oper2 The two operands to compare.

Returns: −1 if oper1 < oper2, +1 if oper1 > oper2 and 0 if oper1 is equal
to oper2.

Notes: The user-defined * operator forwards to this function.

floatcos Return the cosine of an angle

Syntax: Float: floatcos(Float: value, anglemode: mode=radian)

value The value to calculate the cosine of.

mode Specifies whether the angle (in parameter value) is
specified in degrees (sexagesimal system), grades (cen-
tesimal system) or radian. The default is radian.

Returns: The result: the cosine of the input number.

See also: floatsin, floattan

floatdiv Divide a floating point number

Syntax: Float: floatdiv(Float: oper1, Float: oper2)

oper1 The numerator of the quotient.

oper2 The denominator of the quotient.

Returns: The result: oper1/oper2.

Notes: The user-defined / operator forwards to this function.

See also: floatadd, floatmul, floatsub

floatmul � 7

floatfract Return the fractional part of a number

Syntax: Float: floatfract(Float: value)

value The number to extract the fractional part of.

Returns: The fractional part of the parameter, in floating point format. For
example, if the input value is “3.14”, floatfract returns “0.14”.

See also: floatround

floatlog Return the logarithm of a value

Syntax: Float: floatlog(Float: value, Float: base=10.0)

value The value to calculate the logarithm of.

base The logarithmic base to use; the default base is 10.

Returns: The result: the logarithm of the input number.

Notes: This function raises a “domain” error is the input value is zero or
negative.

See also: floatpower

floatmul Multiply two floating point numbers

Syntax: Float: floatmul(Float: oper1, Float: oper2)

oper1

oper2 The two operands to multiply.

Returns: The result: oper1 × oper2.

Notes: The user-defined * operator forwards to this function.

See also: floatadd, floatdiv, floatsub

8 � floatpower

floatpower Raise a floating point number to a power

Syntax: Float: floatpower(Float: value, Float: exponent)

value The value to raise to a power; this is a floating point
number.

exponent The exponent is also a floating pointer number. The
exponent may be zero or negative.

Returns: The result: valueexponent; this is a floating point value.

See also: floatlog, floatsqroot

floatround Round a floating point number to an integer value

Syntax: floatround(Float: value,

floatround method: method=floatround round)

value The value to round.

method The rounding method may be one of:

floatround round

round to the nearest integer; a fractional part of
exactly 0.5 rounds upwards (this is the default);

floatround floor

round downwards;

floatround ceil

round upwards;

floatround tozero

round downwards for positive values and up-
wards for negative values (“truncate”);

Returns: The rounded value, as an integer (an untagged cell).

Notes: When rounding negative values upwards or downwards, note that
−2 is considered smaller than −1.

See also: floatfract

floatsub � 9

floatsin Return the sine of an angle

Syntax: Float: floatsin(Float: value, anglemode: mode=radian)

value The value to calculate the sine of.

mode Specifies whether the angle (in parameter value) is
specified in degrees (sexagesimal system), grades (cen-
tesimal system) or radian. The default is radian.

Returns: The result: the sine of the input number.

See also: floatcos, floattan

floatsqroot Return the square root of a value

Syntax: Float: floatsqroot(Float: value)

value The value to calculate the square root of.

Returns: The result: the square root of the input number.

Notes: This function raises a “domain” error is the input value is negative.

See also: floatpower

floatsub Subtract a floating point number from another

Syntax: Float: floatsub(Float: oper1, Float: oper2)

oper1

oper2 The values to add together.

Returns: The result: the oper1 minus oper2.

Notes: The user-defined + operator forwards to this function.

See also: floatdiv, floatmul, floatsub

10 � floattan

floattan Return the tangent of an angle

Syntax: Float: floattan(Float: value, anglemode: mode=radian)

value The value to calculate the tangent of.

mode Specifies whether the angle (in parameter value) is
specified in degrees (sexagesimal system), grades (cen-
tesimal system) or radian. The default is radian.

Returns: The result: the tangent of the input number.

See also: floatcos, floatsin

strfloat Convert from text (string) to floating point

Syntax: Float: strfloat(const string[])

string The string containing a floating point number in char-
acters. This may be either a packed or unpacked
string. The string may specify a fractional part, e.g.,
“123.45”.

Returns: The value in the string, or zero if the string did not start with a
valid number.

11

Custom operators

All custom operators are declared “native” or “stock”. Operators that you do not
use in your script take no space in the P-code file.

Float:operator*(Float:oper1, Float:oper2)

Float:operator/(Float:oper1, Float:oper2)

Float:operator+(Float:oper1, Float:oper2)

Float:operator-(Float:oper1, Float:oper2)

Float:operator=(oper)

Float:operator++(Float:oper)

Float:operator−−(Float:oper)

Float:operator−(Float:oper)

Float:operator*(Float:oper1, oper2) (“*” is commutative)

Float:operator/(Float:oper1, oper2)

Float:operator/(oper1, Float:oper2)

Float:operator+(Float:oper1, oper2) (“+” is commutative)

Float:operator−(Float:oper1, oper2)

Float:operator−(oper1, Float:oper2)

bool:operator>(Float:oper1, Float:oper2)

bool:operator>(Float:oper1, oper2)

bool:operator>(oper1, Float:oper2)

bool:operator>=(Float:oper1, Float:oper2)

bool:operator>=(Float:oper1, oper2)

bool:operator>=(oper1, Float:oper2)

bool:operator<(Float:oper1, Float:oper2)

bool:operator<(Float:oper1, oper2)

bool:operator<(oper1, Float:oper2)

12 � Custom operators

bool:operator<=(Float:oper1, Float:oper2)

bool:operator<=(Float:oper1, oper2)

bool:operator<=(oper1, Float:oper2)

bool:operator==(Float:oper1, Float:oper2)

bool:operator==(Float:oper1, oper2) (“==” is commutative)

bool:operator!=(Float:oper1, Float:oper2)

bool:operator!=(Float:oper1, oper2) (“!=” is commutative)

bool:operator!(Float:oper)

13

Resources

The pawn toolkit can be obtained from www.compuphase.com in various for-
mats (binaries and source code archives). The manuals for usage of the language
and implementation guides are also available on the site in Adobe Acrobat format
(PDF files).

The limitations of IEEE 754 floating point arithmetic are well documented, but
not very widely known. An introductory article on the pitfalls of floating point
arithmetic is “The Perils of Floating Point” by Bruce M. Bush, available on
www.lahey.com/float.htm.

14 � Resources

15

Index

⋄ Names of persons (not products) are in italics.
⋄ Function names, constants and compiler reserved words are in typewriter

font.

! #include, 2
#pragma rational, 2, 3

A Absolute value, 5
Abstract Machine, 2
Adobe Acrobat, 13

B Base 10, See Decimal arithmetic
Base 2, See Binary arithmetic
Bush, B.M., 13

C cell, 1
Centesimal system, 6, 9, 10
Chained relational operators, 4
Console module, 2
Cosine, 6

D DLL, 2

E Exponentiation, 8

F Fixed point module, 2
float, 3
floatfract, 3
Floating point, 1, 13
floatround, 3
Forbidden operators, 3

H Host application, 2

I IEEE 754, 1, 13

L Linux, 2
Literal numbers, 3
Logarithm, 7

M Microsoft Windows, 2
Modulus, 3

N Native functions, 2
registering, 2

O Operators
forbidden, 3
user-defined, 2, 3, 11

P p.float, 5
p.floatabs, 5
p.floatadd, 5
p.floatcmp, 6
p.floatcos, 6
p.floatdiv, 6
p.floatfract, 7
p.floatlog, 7
p.floatmul, 7
p.floatpower, 8
p.floatround, 8
p.floatsin, 9
p.floatsqroot, 9
p.floatsub, 9

16 � Index

p.floattan, 10
p.strfloat, 10
Prefix file, 2
Preprocessor directive, 2

R Radian, 6, 9, 10
Registering, 2

S Sexagesimal system, 6, 9, 10

Shared library, 2
Significant digits, 1
Sine, 9
Square root, 9
strfloat, 3, 10

T Tangent, 10

U User-defined operators, 2, 3, 11

	Introduction
	Implementing the library
	Usage
	Native functions
	Custom operators
	Resources
	Index

