
Pawn

embedded scripting language

String Manipulation Library

August 2007

Abstract
The “String Manipulation Library” adds a set of general
purpose functions to the pawn scripting language. The
functions support both packed and unpacked strings.

The software that is associated with this application note
can be obtained from the company homepage, see section
“Resources”

Introduction . 1

Packed and unpacked strings .1
UU-encoding .2

Implementing the library . 4

Usage .5

Native functions . 6

Resources .17

Index . 19

ITB CompuPhase

ii

“CompuPhase” is a registered trademark of ITB CompuPhase.

“Linux” is a registered trademark of Linus Torvalds.

“Microsoft” and “Microsoft Windows” are registered trademarks of Microsoft Corporation.

“Unicode” is a trademark of Unicode, Inc.

Copyright c© 2005–2011, ITB CompuPhase; Eerste Industriestraat 19–21, 1401VL
Bussum, The Netherlands (Pays Bas); telephone: (+31)-(0)35 6939 261
e-mail: info@compuphase.com, WWW: http://www.compuphase.com

The information in this manual and the associated software are provided “as is”.
There are no guarantees, explicit or implied, that the software and the manual
are accurate.

Requests for corrections and additions to the manual and the software can be
directed to ITB CompuPhase at the above address.

Typeset with TEX in the “Computer Modern” and “Palatino” typefaces at a base size of 11 points.

1

Introduction

The “pawn” programming language depends on a host application to provide an
interface to the operating system and/or to the functionality of the application.
This interface takes the form of “native functions”, a means by which a pawn

script calls into the application. The pawn “core” toolkit mandates or defines no
native functions at all (the tutorial section in the manual uses only a minimal set
of native functions in its examples). In essence, pawn is a bare language to which
an application-specific library must be added.

That non-withstanding, the availability of general purpose native-function li-
braries is desirable. The “String Manipulation Library” discussed in this doc-
ument intends to be such a general-purpose module.

This application note assumes that the reader understands the pawn language.
For more information on pawn, please read the manual “The pawn booklet —
The Language” which is available from the company homepage.

Packed and unpacked strings

The pawn language does not have variable types. All variables are “cells” which
are typically 32-bit wide (there exist implementations of pawn that use 64-bit
cells). A string is basically an array of cells that holds characters and that is
terminated with the special character ’\0’.

However, in most character sets a character typically takes only a single byte and
a cell typically is a four-byte entity: storing a single character per cell is then a
75% waste. For the sake of compactness, pawn supports packed strings, where
each cell holds as many characters as fit. In our example, one cell would contain
four characters, and there is no space wasted.

At the same time, pawn also supports unpacked strings where each cell holds only
a single character, with the purpose of supporting Unicode or other wide-character
sets. The Unicode character set is usually represented as a 16-bit character set
holding the 60,000 characters of the Basic Multilingual Plane (BMP), and access
to other “planes” through escape codes. A pawn script can hold all characters of
all planes in a cell, since a cell is typically at least 32-bit, without needing escape
codes.

Many programming language solve handling of ascii/Ansi character sets versus
Unicode with their typing system. A function will then work either on one or on

2 � UU-encoding

the other type of string, but the types cannot be mixed. pawn, on the other hand,
does not have types or a typing system, but it can check, at run time, whether a
string a packed or unpacked. This also enables you to write a single function that
operates on both packed and unpacked strings.

The functions in this String Manipulation Library have been constructed so that
they work on packed and unpacked strings.

UU-encoding

For transmitting binary data over communication lines/channels or protocols that
do not support 8-bit transfers, or that reserve some byte values for special “control
characters”, a 6-bit data encoding scheme was devised that uses only the standard
ascii range. This encoding is called “UU-encoding”.

This daemon can encode a stream of binary data into ascii strings that can be
transmitted over all networks that support ascii.

The basic scheme is to break groups of 3 eight bit bytes (24 bits) into 4 six bit
characters and then add 32 (a space) to each six bit character which maps it into
the readily transmittable character. As some transmission mechanisms compress
or remove spaces, spaces are changed into back-quote characters (ascii 96) —this
is a modification of the scheme that is not present in the original versions of the
UU-encode algorithm.

Another way of phrasing this is to say that the encoded 6 bit characters are
mapped into the set:

‘!"#$%&’()*+,-./012356789:;<=>?@ABC...XYZ[\]^_

for transmission over communications lines.

A small number of eight bit bytes are encoded into a single line and a count is
put at the start of the line. Most lines in an encoded file have 45 encoded bytes.
When you look at a UU-encoded file note that most lines start with the letter “M”.
“M” is decimal 77 which, minus the 32 bias, is 45. The purpose of this further
chopping of the byte stream is to allow for handshaking. Each chunk of 45 bytes
(61 encoded characters, plus optionally a newline) is transferred individually and
the remote host typically acknowledges the receipt of each chunk.

Some encode programs put a check character at the end of each line. The check
is the sum of all the encoded characters, before adding the mapping, modulo 64.
Some encode programs have bugs in this line check routine; some use alternative

UU-encoding � 3

methods such as putting another line count character at the end of a line or
always ending a line with an “M”. The functions in this module encode byte
arrays without line check characters, and the decoder routine ignores any “check”
characters behind the data stream.

To determine the end of a stream of UU-encoded data, there are two common
conventions:
⋄ When receiving a line with less that 45 encoded bytes, it signals the last line. If
the last line contains 45 bytes exactly, another line with zero bytes must follow.
A line with zero encoded bytes is a line with only a back-quote.

⋄ A stream must always be ended with a line with 0 (zero) encoded bytes. Re-
ceiving a line with less than 45 encoded bytes does not signal the end of the
stream — it may indicate that further data is only delayed.

4

Implementing the library

The “String Manipulation Library” consists of the two files amxstring.c and
string.inc. The C file may be “linked in” to a project that also includes the pawn

abstract machine (amx.c), or it may be compiled into a DLL (MicrosoftWindows)
or a shared library (Linux). The .inc file contains the definitions for the pawn

compiler of the native functions in amxstring.c. In your pawn programs, you
may either include this file explicitly, using the #include preprocessor directive,
or add it to the “prefix file” for automatic inclusion into any pawn program that
is compiled.

The “Implementer’s Guide” for the pawn toolkit gives details for implementing
the extension module described in this application note into a host application.
The initialization function, for registering the native functions to an abstract
machine, is amx_StringInit and the “clean-up” function is amx_StringCleanup.
In the current implementation, calling the clean-up function is not required.

If the host application supports dynamically loadable extension modules, you may
alternatively compile the C source file as a DLL or shared library. No explicit
initialization or clean-up is then required. Again, see the Implementer’s Guide for
details.

5

Usage

Depending on the configuration of the pawn compiler, you may need to explicitly
include the string.inc definition file. To do so, insert the following line at the
top of each script:

#include <string>

The angle brackets “<...>” make sure that you include the definition file from
the system directory, in the case that a file called string.inc or string.p also
exists in the current directory.

From that point on, the native functions from the string manipulation library are
available.

Several functions have a parameter that specifies the maximum number of cells
that a destination buffer can hold. The purpose of this parameter is to avoid an
accidental buffer overrun. Note that this parameter always gives the buffer size in
cells, even for packed strings. The rationale behind this choice is that the sizeof
operator of pawn also returns the size of buffers in cells.

6

Native functions

ispacked Determine whether a string is packed or unpacked

Syntax: bool: ispacked(const string[])

string The string to verify the packed/unpacked status for.

Returns: true if the parameter refers to a packed string, and false otherwise.

memcpy Copy bytes from one location to another

Syntax: memcpy(dest[], const source[], index=0, numbytes,

maxlength=sizeof dest)

dest An array into which the bytes from source are copied
in.

source The source array.

index The index, in bytes in the source array starting from
which the data should be copied.

numbytes The number of bytes (not cells) to copy.

maxlength The maximum number of cells that fit in the destina-
tion buffer.

Returns: true on success, false on failure.

Notes: This function can align byte strings in cell arrays, or concatenate
two byte strings in two arrays. The parameter index is a byte offset
and numbytes is the number of bytes to copy.

This function allows copying in-place, for aligning a byte region
inside a cell array.

Endian issues (for multi-byte values in the data stream) are not
handled.

See also: strcopy, strpack, strunpack, uudecode, uuencode

strcmp � 7

strcat Concatenate two strings

Syntax: strcat(dest[], const source[],

maxlength=sizeof dest)

dest The buffer in which the result will be stored. This
buffer already contains the first part of the string.

source The string to append to the string in dest.

maxlength If the length of dest would exceed maxlength cells
after the string concatenation, the result is truncated
to maxlength cells.

Returns: The string length of dest after concatenation.

Notes: During concatenation, the source string may be converted from
packed to unpacked, or vice versa, in order to match dest. If dest
is an empty string, the function makes a plain copy of source,
meaning that the result (in dest) will be a packed string if source
is packed too, and unpacked otherwise.

See also: strcopy, strins, strpack, strunpack

strcmp Compare two strings

Syntax: strcmp(const string1[], const string2[],

bool: ignorecase=false, length=cellmax)

string1 The first string in the comparison.

string2 The first string in the comparison.

ignorecase If logically “true”, case is ignored during the compar-
ison.

length The maximum number of characters to consider for
comparison.

Returns: The return value is:
−1 if string1 comes before string2,
1 if string1 comes after string2, or
0 if the strings are equal (for the matched length).

8 � strcopy

Notes: Packed and unpacked strings may be mixed in the comparison.

This function does not take the sort order of non-ascii character
sets into account. That is, no Unicode “Collation Algorithm” is
used.

See also: strequal, strfind

strcopy Create a copy of a string

Syntax: strcopy(dest[], const source[],

maxlength=sizeof dest)

dest The buffer to store the copy of the string string in.

source The string to copy, this may be a packed or an un-
packed string.

maxlength If the length of dest would exceed maxlength cells,
the result is truncated to maxlength cells. Note that
several packed characters fit in each cell.

Returns: The number of characters copied.

Notes: This function copies a string from source to dest. If the source
string is a packed string, the destination will be packed too; likewise,
if the source string is unpacked, the destination will be unpacked too.
See functions strpack and strunpack to convert between packed
and unpacked strings.

See also: strcat, strpack, strunpack

strdel Delete characters from the string

Syntax: bool: strdel(string[], start, end)

string The string from which to remove a range characters.

start The parameter startmust point at the first character
to remove (starting at zero).

strfind � 9

end The parameter end must point behind the last char-
acter to remove.

Returns: true on success and false on failure.

Notes: For example, to remove the letters “ber” from the string “Jabber-
wocky”, set start to 3 and end to 6.

See also: strins

strequal Compare two strings

Syntax: bool: strequal(const string1[], const string2[],

bool: ignorecase=false,

length=cellmax)

string1 The first string in the comparison.

string2 The first string in the comparison.

ignorecase If logically “true”, case is ignored during the compar-
ison.

length The maximum number of characters to consider for

Returns: true if the strings are equal, false if they are different.

See also: strcmp

strfind Search for a sub-string in a string

Syntax: strfind(const string[], const sub[],

bool: ignorecase=false, index=0)

string The string in which you wish to search for sub-strings.

sub The sub-string to search for.

ignorecase If logically “true”, case is ignored during the compar-
ison.

index The character position in string to start searching.
Set to 0 to start from the beginning of the string.

10 � strformat

Returns: The function returns the character index of the first occurrence of
the string sub in string, or −1 if no occurrence was found. If
an occurrence was found, you can search for the next occurrence by
calling strfind again and set the parameter offset to the returned
value plus one.

Notes: This function searches for the presence of a sub-string in a string,
optionally ignoring the character case and optionally starting at an
offset in the string.

See also: strcmp

strformat Convert values to text

Syntax: strformat(dest[], size=sizeof dest,

bool: pack=false, const format[], . . .)

dest The string that will contain the formatted result.

size The maximum number of cells that the dest parame-
ter can hold. This value includes the zero terminator.

pack If true, the string in dest will become a packed string.
Otherwise, the string in dest will be unpacked.

format The string to store in dest, which may contain place-
holders (see the notes below).

... The parameters for the placeholders. These values
may be untagged, weakly tagged, or tagged as rational
values.

Returns: This function always returns 0.

Notes: The format parameter is a string that may contain embedded place-

holder codes:

%c store a character at this position

%d store a number at this position in decimal radix

%f store a floating point number at this position (for implementa-
tions that support floating point)

%q store a fixed point number at this position

strins � 11

%r same as either %q or %r (for compatibility with other implemen-
tations of pawn, consult your documentation for details)

%s store a character string at this position
%x store a number at this position in hexadecimal radix

The values for the placeholders follow as parameters in the call.

You may optionally put a number between the “%” and the letter of
the placeholder code. This number indicates the field width; if the
size of the parameter to print at the position of the placeholder is
smaller than the field width, the field is expanded with spaces.

The strformat function works similarly to the sprintf function of
the C language.

See also: valstr

strins Insert a sub-string in a string

Syntax: bool: strins(string[], const substr[], index,

maxlength=sizeof string)

string The source and destination string.

substr The string to insert in parameter string.

index The character position of string where substr is in-
serted. When 0, substr is prepended to string.

maxlength If the length of dest would exceed maxlength cells
after insertion, the result is truncated to maxlength

cells.

Returns: true on success and false on failure.

Notes: During insertion, the substr parameter may be converted from a
packed string to an unpacked string, or vice versa, in order to match
string.

If the total length of string would exceed maxlength cells after
inserting substr, the function raises an error.

See also: strcat, strdel

12 � strlen

strlen Return the length of a string

Syntax: strlen(const string[])

string The string to get the length from.

Returns: The length of the string in characters (not the number of cells). The
string length excludes the terminating “\0” character.

Notes: Like all functions in this library, the function handles both packed
and unpacked strings.

To get the number of cells held by a packed string of a given length,
you can use the predefined constants charbits and cellbits.

See also: ispacked

strmid Extract a range of characters from a string

Syntax: strmid(dest[], const source[],

start=0, end=cellmax,

maxlength=sizeof dest)

dest The string to store the extracted characters in.

source The string from which to extract characters.

start The parameter startmust point at the first character
to extract (starting at zero).

end The parameter end must point behind the last char-
acter to extract.

maxlength If the length of dest would exceed maxlength cells,
the result is truncated to maxlength cells.

Returns: The number of characters stored in dest.

Notes: The parameter start must point at the first character to extract
(starting at zero) and the parameter end must point behind the last
character to extract. For example, when the source string contains
“Jabberwocky”, start is 1 and end is 5, parameter dest will contain
“abbe” upon return.

See also: strdel

strunpack � 13

strpack Create a “packed” copy of a string

Syntax: strpack(dest[], const source[],

maxlength=sizeof dest)

dest The buffer to store the packed string in.

source The string to copy, this may be a packed or an un-
packed string.

maxlength If the length of dest would exceed maxlength cells,
the result is truncated to maxlength cells. Note that
several packed characters fit in each cell.

Returns: The number of characters copied.

Notes: This function copies a string from source to dest where the desti-
nation string will be in packed format. The source string may either
be a packed or an unpacked string.

See also: strcat, strunpack

strunpack Create an “unpacked” copy of a string

Syntax: strunpack(dest[], const source[],

maxlength=sizeof dest)

dest The buffer to store the unpacked string in.

source The string to copy, this may be a packed or an un-
packed string.

maxlength If the length of dest would exceed maxlength cells,
the result is truncated to maxlength cells.

Returns: The number of characters copied.

Notes: This function copies a string from source to dest where the des-
tination string will be in unpacked format. The source string may
either be a packed or an unpacked string.

See also: strcat, strpack

14 � strval

strval Convert from text (string) to numbers

Syntax: strval(const string[], index=0)

string The string containing a number in characters. This
may be either a packed or unpacked string.

index The position in the string where to start looking for a
number. This parameter allows to skip an initial part
of a string, and extract numbers from the middle of a
string.

Returns: The value in the string, or zero if the string did not start with a
valid number (starting at index).

See also: valstr

uudecode Decode an UU-encoded stream

Syntax: uudecode(dest[], const source[],

maxlength=sizeof dest)

dest The array that will hold the decoded byte array.

source The UU-encoded source string.

maxlength If the length of dest would exceed maxlength cells,
the result is truncated to maxlength cells. Note that
several bytes fit in each cell.

Returns: The number of bytes decoded and stored in dest.

Notes: Since the UU-encoding scheme is used for binary data, the decoded
data is always “packed”. The data is unlikely to be a string (the
zero-terminator may not be present, or it may be in the middle of
the data).

A buffer may be decoded “in-place”; the destination size is always
smaller than the source size. Endian issues (for multi-byte values in
the data stream) are not handled.

Binary data is encoded in chunks of 45 bytes. To assemble these
chunks into a complete stream, function memcpy allows you to con-
catenate buffers at byte-aligned boundaries.

valstr � 15

See also: memcpy, uuencode

uuencode Encode an UU-encoded stream

Syntax: uuencode(dest[], const source[], numbytes,

maxlength=sizeof dest)

dest The array that will hold the encoded string.

source The UU-encoded byte array.

numbytes The number of bytes (in the source array) to encode.
This should not exceed 45.

maxlength If the length of dest would exceed maxlength cells,
the result is truncated to maxlength cells. Note that
several bytes fit in each cell.

Returns: Returns the number of characters encoded, excluding the zero string
terminator; if the dest buffer is too small, not all bytes are stored.

Notes: This function always creates a packed string. The string has a new-
line character at the end.

Binary data is encoded in chunks of 45 bytes. To extract 45 bytes
from an array with data, possibly from a byte-aligned address, you
can use the function memcpy.

A buffer may be encoded “in-place” if the destination buffer is large
enough. Endian issues (for multi-byte values in the data stream)
are not handled.

See also: memcpy, uudecode

valstr Convert a number to text (string)

Syntax: valstr(dest[], value, bool: pack=false)

dest The string to store the text representation of the num-
ber in.

value The number to put in the string dest.

16 � valstr

pack If true, dest will become a packed string, otherwise
it will be an unpacked string.

Returns: The number of characters stored in dest, excluding the terminating
“\0” character.

Notes: Parameter dest should be of sufficient size to hold the converted
number. The function does not check this.

See also: strval

17

Resources

The pawn toolkit can be obtained from www.compuphase.com in various for-
mats (binaries and source code archives). The manuals for usage of the language
and implementation guides are also available on the site in Adobe Acrobat format
(PDF files).

Documentation on Unicode and the Basic Multilingual Plane (BMP) appears on
http://www.unicode.org.

18 � Resources

19

Index

⋄ Names of persons (not products) are in italics.
⋄ Function names, constants and compiler reserved words are in typewriter

font.

! #include, 4

A Abstract Machine, 4
Adobe Acrobat, 17
ASCII, 2

B Basic Multilingual Plane, 1
BMP, 17

D DLL, 4

H Host application, 4

I ispacked, 6

L Linux, 4

M memcpy, 6
Microsoft Windows, 4

N Native functions, 4
registering, 4

P Packed strings, 1
Prefix file, 4
Preprocessor directive, 4

R Registering, 4

S Shared library, 4

strcat, 7

strcmp, 7

strcopy, 8

strdel, 8

strequal, 9

strfind, 9

strformat, 10

strins, 11

strlen, 12

strmid, 12

strpack, 13

strunpack, 13

strval, 14

U Unicode, 1, 17

Unpacked strings, 1

UU-encode, 2, 14, 15

uudecode, 14

uuencode, 15

V valstr, 15

	Introduction
	Packed and unpacked strings
	UU-encoding

	Implementing the library
	Usage
	Native functions
	Resources
	Index

